Page 125 - Read Online
P. 125
Zhang et al. Soft Sci 2024;4:23 https://dx.doi.org/10.20517/ss.2023.58 Page 19 of 21
29. Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull
2000;51:293-306. DOI PubMed
30. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016;1:16063. DOI
31. Guan S, Wang J, Gu X, et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv
2019;5:eaav2842. DOI
32. Liang Q, Xia X, Sun X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain
neural signals. Adv Sci 2022;9:e2201059. DOI PubMed PMC
33. Murphy RNA, Elsayed H, Singh S, Dumville J, Wong JKF, Reid AJ. A quantitative systematic review of clinical outcome measure
use in peripheral nerve injury of the upper limb. Neurosurgery 2021;89:22-30. DOI PubMed PMC
34. Bhandari PS. Management of peripheral nerve injury. J Clin Orthop Trauma 2019;10:862-6. DOI PubMed PMC
35. Geissler J, Stevanovic M. Management of large peripheral nerve defects with autografting. Injury 2019;50 Suppl 5:S64-7. DOI
PubMed
36. Boyd KU, Nimigan AS, Mackinnon SE. Nerve reconstruction in the hand and upper extremity. Clin Plast Surg 2011;38:643-60. DOI
PubMed
37. Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or
biopsy. Microsurgery 2020;40:710-6. DOI PubMed PMC
38. Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology
trends and translational tribulations. Front Bioeng Biotechnol 2022;10:863969. DOI PubMed PMC
39. Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JF. Peripheral nerve regeneration: current status and new strategies using
polymeric materials. Adv Healthc Mater 2016;5:2732-44. DOI PubMed
40. Groves MJ, Christopherson T, Giometto B, Scaravilli F. Axotomy-induced apoptosis in adult rat primary sensory neurons. J
Neurocytol 1997;26:615-24. DOI PubMed
41. Dahlin LB. The biology of nerve injury and repair. J Am Soc Surg Hand 2004;4:143-55. DOI
42. Gao YB, Liu ZG, Lin GD, et al. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-
blind, multicenter clinical trial. Neural Regen Res 2021;16:1652-9. DOI PubMed PMC
43. Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of
nerve guidance conduits for humans. J Mater Sci Mater Med 2015;26:226. DOI PubMed PMC
44. Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a
damaged peripheral nerve. ACS Nano 2020;14:16565-75. DOI PubMed
45. Zhang H, Wang H, Wen B, Lu L, Zhao Y, Chai R. Ultrasound-responsive composited conductive silk conduits for peripheral nerve
regeneration. Small Struct 2023;4:2300045. DOI
46. Ahn HS, Hwang JY, Kim MS, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta
Biomater 2015;13:324-34. DOI PubMed
47. Wang L, Lu C, Yang S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv
2020;6:eabc6686. DOI PubMed PMC
48. Alchagirov BB, Mozgovoi AG. The surface tension of molten gallium at high temperatures. High Temp 2005;43:791-2. DOI
49. Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 2005;383:1009-13.
DOI PubMed
50. Deng Y, E E, Li J, Jiang Y, Mei S, Yu Y. Materials, fundamentals, and technologies of liquid metals toward carbon neutrality. Sci
China Technol Sci 2023;66:1576-94. DOI
51. Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res 2021;2:1093-103. DOI
52. Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packaging
2011;133:041009. DOI
53. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA. Reference data for the density and viscosity of liquid cadmium,
cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 2012;41:033101. DOI
54. Liu T, Sen P, Kim C. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech
Syst 2012;21:443-50. DOI
55. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater
2018;20:1700781. DOI
56. Hao Y, Gao J, Lv Y, Liu J. Low melting point alloys enabled stiffness tunable advanced materials. Adv Funct Mater
2022;32:2201942. DOI
57. Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today
2020;20:100722. DOI
58. Lawrence JG, Berhan LM, Nadarajah A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008;2:1230-
6. DOI PubMed
59. Guo Y, Jiang S, Grena BJB, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for
chronic neural interfaces. ACS Nano 2017;11:6574-85. DOI PubMed
60. Sevil B, Zuhal K. Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene).
Macromol Symp 2010;295:59-64. DOI

