Page 125 - Read Online
P. 125

Zhang et al. Soft Sci 2024;4:23  https://dx.doi.org/10.20517/ss.2023.58         Page 19 of 21

               29.       Branner A, Normann RA. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull
                    2000;51:293-306.  DOI  PubMed
               30.       Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016;1:16063.  DOI
               31.       Guan  S,  Wang  J,  Gu  X,  et  al.  Elastocapillary  self-assembled  neurotassels  for  stable  neural  activity  recordings.  Sci  Adv
                    2019;5:eaav2842.  DOI
               32.       Liang Q, Xia X, Sun X, et al. Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain
                    neural signals. Adv Sci 2022;9:e2201059.  DOI  PubMed  PMC
               33.       Murphy RNA, Elsayed H, Singh S, Dumville J, Wong JKF, Reid AJ. A quantitative systematic review of clinical outcome measure
                    use in peripheral nerve injury of the upper limb. Neurosurgery 2021;89:22-30.  DOI  PubMed  PMC
               34.       Bhandari PS. Management of peripheral nerve injury. J Clin Orthop Trauma 2019;10:862-6.  DOI  PubMed  PMC
               35.       Geissler J, Stevanovic M. Management of large peripheral nerve defects with autografting. Injury 2019;50 Suppl 5:S64-7.  DOI
                    PubMed
               36.       Boyd KU, Nimigan AS, Mackinnon SE. Nerve reconstruction in the hand and upper extremity. Clin Plast Surg 2011;38:643-60.  DOI
                    PubMed
               37.       Ducic I, Yoon J, Buncke G. Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or
                    biopsy. Microsurgery 2020;40:710-6.  DOI  PubMed  PMC
               38.       Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology
                    trends and translational tribulations. Front Bioeng Biotechnol 2022;10:863969.  DOI  PubMed  PMC
               39.       Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JF. Peripheral nerve regeneration: current status and new strategies using
                    polymeric materials. Adv Healthc Mater 2016;5:2732-44.  DOI  PubMed
               40.       Groves MJ, Christopherson T, Giometto B, Scaravilli F. Axotomy-induced apoptosis in adult rat primary sensory neurons. J
                    Neurocytol 1997;26:615-24.  DOI  PubMed
               41.       Dahlin LB. The biology of nerve injury and repair. J Am Soc Surg Hand 2004;4:143-55.  DOI
               42.       Gao YB, Liu ZG, Lin GD, et al. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-
                    blind, multicenter clinical trial. Neural Regen Res 2021;16:1652-9.  DOI  PubMed  PMC
               43.       Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of
                    nerve guidance conduits for humans. J Mater Sci Mater Med 2015;26:226.  DOI  PubMed  PMC
               44.       Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a
                    damaged peripheral nerve. ACS Nano 2020;14:16565-75.  DOI  PubMed
               45.       Zhang H, Wang H, Wen B, Lu L, Zhao Y, Chai R. Ultrasound-responsive composited conductive silk conduits for peripheral nerve
                    regeneration. Small Struct 2023;4:2300045.  DOI
               46.       Ahn HS, Hwang JY, Kim MS, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta
                    Biomater 2015;13:324-34.  DOI  PubMed
               47.       Wang L, Lu C, Yang S, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv
                    2020;6:eabc6686.  DOI  PubMed  PMC
               48.       Alchagirov BB, Mozgovoi AG. The surface tension of molten gallium at high temperatures. High Temp 2005;43:791-2.  DOI
               49.       Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Anal Bioanal Chem 2005;383:1009-13.
                    DOI  PubMed
               50.       Deng Y, E E, Li J, Jiang Y, Mei S, Yu Y. Materials, fundamentals, and technologies of liquid metals toward carbon neutrality. Sci
                    China Technol Sci 2023;66:1576-94.  DOI
               51.       Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res 2021;2:1093-103.  DOI
               52.       Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packaging
                    2011;133:041009.  DOI
               53.       Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA. Reference data for the density and viscosity of liquid cadmium,
                    cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 2012;41:033101.  DOI
               54.       Liu T, Sen P, Kim C. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech
                    Syst 2012;21:443-50.  DOI
               55.       Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Adv Eng Mater
                    2018;20:1700781.  DOI
               56.       Hao  Y,  Gao  J,  Lv  Y,  Liu  J.  Low  melting  point  alloys  enabled  stiffness  tunable  advanced  materials.  Adv  Funct  Mater
                    2022;32:2201942.  DOI
               57.       Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today
                    2020;20:100722.  DOI
               58.       Lawrence JG, Berhan LM, Nadarajah A. Elastic properties and morphology of individual carbon nanofibers. ACS Nano 2008;2:1230-
                    6.  DOI  PubMed
               59.       Guo Y, Jiang S, Grena BJB, et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for
                    chronic neural interfaces. ACS Nano 2017;11:6574-85.  DOI  PubMed
               60.       Sevil B, Zuhal K. Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene).
                    Macromol Symp 2010;295:59-64.  DOI
   120   121   122   123   124   125   126   127   128   129   130