Page 181 - Read Online
P. 181
Arab Hassani. Soft Sci 2023;3:31 https://dx.doi.org/10.20517/ss.2023.23 Page 29 of 33
2022;13:5076. DOI PubMed PMC
58. Yang Y, Zhang H, Chen J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector
sensor system. ACS Nano 2013;7:7342-51. DOI
59. Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward self-control systems for neurogenic underactive bladder: a triboelectric
nanogenerator sensor integrated with a bistable micro-actuator. ACS Nano 2018;12:3487-501. DOI
60. Hassani FA, Lee C. A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA). J
Microelectromech Syst 2015;24:1338-45. DOI
61. Kim C, Lee KK, Kang MS, et al. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive
review. Biomater Res 2022;26:40. DOI PubMed PMC
62. Chouhdry HH, Lee DH, Bag A, Lee NE. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated
electrochemical transistor. Nat Commun 2023;14:821. DOI PubMed PMC
63. Moon D, Cha YK, Kim SO, Cho S, Ko HJ, Park TH. FET-based nanobiosensors for the detection of smell and taste. Sci China Life
Sci 2020;63:1159-67. DOI PubMed
64. Zhao T, Wang Q, Du A. Self-powered flexible sour sensor for detecting ascorbic acid concentration based on triboelectrification/
enzymatic-reaction coupling effect. Sensors 2021;21:373. DOI PubMed PMC
65. Prasad BB, Tiwari MP. Molecularly imprinted nanomaterial-based highly sensitive and selective medical devices. In: Tiwari A,
Ramalingam M, Kobayashi H, Turner APF, editors. Biomedical materials and diagnostic devices. Scrivener Publishing LLC; 2012. p.
339-91. DOI
66. Wang J, Sakai K, Kiwa T. All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues. Sens Diagn 2023;2:620-
6. DOI
67. Nag A, Mukhopadhyay SC. Fabrication and implementation of printed sensors for taste sensing applications. Sens Actuator A Phys
2018;269:53-61. DOI
68. Jung YH, Hong SK, Wang HS, et al. Speech recognition: flexible piezoelectric acoustic sensors and machine learning for speech
processing. Adv Mater 2020;32:2070259. DOI
69. Viola G, Chang J, Maltby T, et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric
nanofibers. ACS Appl Mater Interfaces 2020;12:34643-57. DOI PubMed PMC
70. Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin
structures for machine learning biometrics. Sci Adv 2021;7:eabe5683. DOI PubMed PMC
71. Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor devices inspired by the five senses: a review.
Electroanalysis 2016;28:1201-41. DOI
72. Johnson KJ, Rose-Pehrsson SL. Sensor array design for complex sensing tasks. Annu Rev Anal Chem 2015;8:287-310. DOI PubMed
73. Kashyap V, Yin J, Xiao X, Chen J. Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Res
2023;1-17. DOI
74. Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano
Converg 2019;6:28. DOI PubMed PMC
75. Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst
Nanoeng 2016;2:16043. DOI PubMed PMC
76. Lu K, Li L, Jiang S, et al. Advanced bioinspired organic sensors for future-oriented intelligent applications. Adv Sens Res
2023;2:2200066. DOI
77. Liu Z, Kong J, Qu M, Zhao G, Zhang C. Progress in data acquisition of wearable sensors. Biosensors 2022;12:889. DOI PubMed
PMC
78. Marquez AV, McEvoy N, Pakdel A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics.
Molecules 2020;25:5288. DOI PubMed PMC
79. Braendlein M, Lonjaret T, Leleux P, Badier JM, Malliaras GG. Voltage amplifier based on organic electrochemical transistor. Adv Sci
2017;4:1600247. DOI PubMed PMC
80. Li Z, Wei Q, Han J. Editorial: array-based sensing techniques for clinical, agricultural biotechnology, and environmental analysis.
Front Chem 2021;9:654707. DOI PubMed PMC
81. Duan Y, He S, Wu J, Su B, Wang Y. Recent progress in flexible pressure sensor arrays. Nanomaterials 2022;12:2495. DOI PubMed
PMC
82. Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater
2019;31:e1806739. DOI
83. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019;48:1465-91. DOI
84. Cheng S, Gu Z, Zhou L, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on
biofluids. Front Bioeng Biotechnol 2021;9:765987. DOI PubMed PMC
85. Dong W, Wang Y, Zhou Y, et al. Soft human-machine interfaces: design, sensing and stimulation. Int J Intell Robot Appl 2018;2:313-
38. DOI
86. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43. DOI
87. Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding
efficiency. Sci Adv 2020;6:eaba0412. DOI PubMed PMC

