Page 181 - Read Online
P. 181

Arab Hassani. Soft Sci 2023;3:31  https://dx.doi.org/10.20517/ss.2023.23         Page 29 of 33

                    2022;13:5076.  DOI  PubMed  PMC
               58.       Yang Y, Zhang H, Chen J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector
                    sensor system. ACS Nano 2013;7:7342-51.  DOI
               59.       Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward self-control systems for neurogenic underactive bladder: a triboelectric
                    nanogenerator sensor integrated with a bistable micro-actuator. ACS Nano 2018;12:3487-501.  DOI
               60.       Hassani FA, Lee C. A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA). J
                    Microelectromech Syst 2015;24:1338-45.  DOI
               61.       Kim C, Lee KK, Kang MS, et al. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive
                    review. Biomater Res 2022;26:40.  DOI  PubMed  PMC
               62.       Chouhdry HH, Lee DH, Bag A, Lee NE. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated
                    electrochemical transistor. Nat Commun 2023;14:821.  DOI  PubMed  PMC
               63.       Moon D, Cha YK, Kim SO, Cho S, Ko HJ, Park TH. FET-based nanobiosensors for the detection of smell and taste. Sci China Life
                    Sci 2020;63:1159-67.  DOI  PubMed
               64.       Zhao T, Wang Q, Du A. Self-powered flexible sour sensor for detecting ascorbic acid concentration based on triboelectrification/
                    enzymatic-reaction coupling effect. Sensors 2021;21:373.  DOI  PubMed  PMC
               65.       Prasad BB, Tiwari MP. Molecularly imprinted nanomaterial-based highly sensitive and selective medical devices. In: Tiwari A,
                    Ramalingam M, Kobayashi H, Turner APF, editors. Biomedical materials and diagnostic devices. Scrivener Publishing LLC; 2012. p.
                    339-91.  DOI
               66.       Wang J, Sakai K, Kiwa T. All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues. Sens Diagn 2023;2:620-
                    6.  DOI
               67.       Nag A, Mukhopadhyay SC. Fabrication and implementation of printed sensors for taste sensing applications. Sens Actuator A Phys
                    2018;269:53-61.  DOI
               68.       Jung YH, Hong SK, Wang HS, et al. Speech recognition: flexible piezoelectric acoustic sensors and machine learning for speech
                    processing. Adv Mater 2020;32:2070259.  DOI
               69.       Viola G, Chang J, Maltby T, et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric
                    nanofibers. ACS Appl Mater Interfaces 2020;12:34643-57.  DOI  PubMed  PMC
               70.       Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin
                    structures for machine learning biometrics. Sci Adv 2021;7:eabe5683.  DOI  PubMed  PMC
               71.       Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor devices inspired by the five senses: a review.
                    Electroanalysis 2016;28:1201-41.  DOI
               72.      Johnson KJ, Rose-Pehrsson SL. Sensor array design for complex sensing tasks. Annu Rev Anal Chem 2015;8:287-310.  DOI  PubMed
               73.       Kashyap V, Yin J, Xiao X, Chen J. Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Res
                    2023;1-17. DOI
               74.       Parameswaran C, Gupta D. Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano
                    Converg 2019;6:28.  DOI  PubMed  PMC
               75.       Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst
                    Nanoeng 2016;2:16043.  DOI  PubMed  PMC
               76.       Lu K, Li L, Jiang S, et al. Advanced bioinspired organic sensors for future-oriented intelligent applications. Adv Sens Res
                    2023;2:2200066.  DOI
               77.       Liu Z, Kong J, Qu M, Zhao G, Zhang C. Progress in data acquisition of wearable sensors. Biosensors 2022;12:889.  DOI  PubMed
                    PMC
               78.       Marquez AV, McEvoy N, Pakdel A. Organic electrochemical transistors (OECTs) toward flexible and wearable bioelectronics.
                    Molecules 2020;25:5288.  DOI  PubMed  PMC
               79.       Braendlein M, Lonjaret T, Leleux P, Badier JM, Malliaras GG. Voltage amplifier based on organic electrochemical transistor. Adv Sci
                    2017;4:1600247.  DOI  PubMed  PMC
               80.       Li Z, Wei Q, Han J. Editorial: array-based sensing techniques for clinical, agricultural biotechnology, and environmental analysis.
                    Front Chem 2021;9:654707.  DOI  PubMed  PMC
               81.       Duan Y, He S, Wu J, Su B, Wang Y. Recent progress in flexible pressure sensor arrays. Nanomaterials 2022;12:2495.  DOI  PubMed
                    PMC
               82.       Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater
                    2019;31:e1806739.  DOI
               83.       Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019;48:1465-91.  DOI
               84.       Cheng S, Gu Z, Zhou L, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on
                    biofluids. Front Bioeng Biotechnol 2021;9:765987.  DOI  PubMed  PMC
               85.       Dong W, Wang Y, Zhou Y, et al. Soft human-machine interfaces: design, sensing and stimulation. Int J Intell Robot Appl 2018;2:313-
                    38.  DOI
               86.      Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.  DOI
               87.       Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding
                    efficiency. Sci Adv 2020;6:eaba0412.  DOI  PubMed  PMC
   176   177   178   179   180   181   182   183   184   185   186