Page 182 - Read Online
P. 182

Page 30 of 33                         Arab Hassani. Soft Sci 2023;3:31  https://dx.doi.org/10.20517/ss.2023.23

               88.       Ren L, Li B, Wei G, et al. Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. iScience
                    2021;24:103075.  DOI  PubMed  PMC
               89.       Bhave G, Chen JC, Singer A, Sharma A, Robinson JT. Distributed sensor and actuator networks for closed-loop bioelectronic
                    medicine. Mater Today 2021;46:125-35.  DOI  PubMed  PMC
               90.       Yoo S, Yang T, Park M, et al. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices.
                    Nat Commun 2023;14:1024.  DOI  PubMed  PMC
               91.       Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016;48:e219.  DOI  PubMed  PMC
               92.       Grose DN, O’brien CL, Castle DJ. Type 1 diabetes and an insulin pump: an iterative review of qualitative literature. Pract Diab
                    2017;34:281-7c.  DOI
               93.       Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Adv Mater
                    2021;33:e2003139.  DOI  PubMed
               94.       Li S, Wang KW. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim
                    2016;12:011001.  DOI
               95.       Speck T, Cheng T, Klimm F, et al. Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS
                    Bulletin 2023.  DOI
               96.       Yang M, Wu J, Jiang W, Hu X, Iqbal MI, Sun F. Bioinspired and hierarchically textile structured soft actuators for healthcare
                    wearables. Adv Funct Mater 2023;33:2210351.  DOI
               97.       Lan R, Shen W, Yao W, Chen J, Chen X, Yang H. Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft
                    actuators to visualized sensors and detectors. Mater Horiz 2023;10:2824-44.  DOI
               98.       Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat
                    Commun 2022;13:3853.  DOI  PubMed  PMC
               99.       Lee HJ, Baik S, Hwang GW, et al. An electronically perceptive bioinspired soft wet-adhesion actuator with carbon nanotube-based
                    strain sensors. ACS Nano 2021;15:14137-48.  DOI
               100.     Ren J, Liu Q, Pei Y, et al. Bioinspired energy storage and harvesting devices. Adv Mater Technol 2021;6:2001301.  DOI
               101.      Peng L, Zhang Y, Wang J, et al. Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board
                    sensing and self-powered charging. Nano Energy 2022;99:107367.  DOI
               102.      Arab Hassani F, Shi Q, Wen F, et al. Smart materials for smart healthcare- moving from sensors and actuators to self-sustained
                    nanoenergy nanosystems. Smart Mater Med 2020;1:92-124.  DOI
               103.      Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy
                    harvesting. Bioact Mater 2023;22:291-311.  DOI  PubMed  PMC
               104.      Wang X, Yin Y, Yi F, et al. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered
                    electronics. Nano Energy 2017;39:429-36.  DOI
               105.      Tauber FJ, Slesarenko V. Early career scientists converse on the future of soft robotics. Front Robot AI 2023;10:1129827.  DOI
                    PubMed  PMC
               106.      Zhi C, Shi S, Zhang S, et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy
                    harvesting and all-range health sensing. Nanomicro Lett 2023;15:60.  DOI  PubMed  PMC
               107.      Li W, Pei Y, Zhang C, Kottapalli AGP. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano
                    Energy 2021;84:105865.  DOI
               108.      Shin D, Han HJ, Kim W, et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy
                    Environ Sci 2015;8:3198-203.  DOI
               109.      Senthil R, Yuvaraj S. A comprehensive review on bioinspired solar photovoltaic cells. Int J Energy Res 2019;43:1068-81.  DOI
               110.      Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater 2022;7:870-86.  DOI
               111.      Valle M. Bioinspired sensor systems. Sensors 2011;11:10180-6.  DOI  PubMed  PMC
               112.      Jung YH, Park B, Kim JU, Kim TI. Bioinspired electronics for artificial sensory systems. Adv Mater 2019;31:e1803637.  DOI
                    PubMed
               113.      Xiao K, Wan C, Jiang L, Chen X, Antonietti M. Bioinspired ionic sensory systems: the successor of electronics. Adv Mater
                    2020;32:e2000218.  DOI
               114.     Li P, Anwar Ali HP, Cheng W, Yang J, Tee BCK. Bioinspired prosthetic interfaces. Adv Mater Technol 2020;5:1900856.  DOI
               115.      Xue J, Zou Y, Deng Y, Li Z. Bioinspired sensor system for health care and human-machine interaction. EcoMat 2022;4:e12209.
                    DOI
               116.      Choi C, Choi MK, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS -graphene curved image
                                                                                         2
                    sensor array. Nat Commun 2017;8:1664.  DOI  PubMed  PMC
               117.      Song WJ, Lee Y, Jung Y, et al. Soft artificial electroreceptors for noncontact spatial perception. Sci Adv 2021;7:eabg9203.  DOI
                    PubMed  PMC
               118.      Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.  DOI
               119.      Zhou Q, Ji B, Wei Y, et al. A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high
                    sensitivity and a broad detection range. J Mater Chem A 2019;7:27334-46.  DOI
               120.      Kim SH, Baek GW, Yoon J, et al. A bioinspired stretchable sensory-neuromorphic system. Adv Mater 2021;33:e2104690.  DOI
                    PubMed
   177   178   179   180   181   182   183   184   185   186   187