Page 18 - Read Online
P. 18
Schiffmann. Rare Dis Orphan Drugs J 2024;3:4 https://dx.doi.org/10.20517/rdodj.2023.50 Page 9 of 11
23. Medoh UN, Hims A, Chen JY, et al. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate
synthase. Science 2023;381:1182-9. DOI
24. Ilnytska O, Lai K, Gorshkov K, et al. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves
lysosomal function, and reduces cholesterol storage. J Biol Chem 2021;297:100813. DOI PubMed PMC
25. Chen JYS, Chua D, Lim CO, Ho WX, Tan NS. Lessons on drug development: a literature review of challenges faced in nonalcoholic
fatty liver disease (NAFLD) clinical Trials. Int J Mol Sci 2022;24:158. DOI PubMed PMC
26. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling.
Circ Res 2018;122:877-902. DOI PubMed PMC
27. Bassoy EY, Walch M, Martinvalet D. Reactive oxygen species: do they play a role in adaptive immunity? Front Immunol
2021;12:755856. DOI PubMed PMC
28. Bozic M, Caus M, Rodrigues-Diez RR, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney
fibrosis. Nat Commun 2020;11:1943. DOI PubMed PMC
29. Oliveira LM, Falomir-Lockhart LJ, Botelho MG, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal
differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis 2015;6:e1994. DOI
PubMed PMC
30. Book A, Guella I, Candido T, et al; SNCA Multiplication investigators of the GEoPD consortium. A meta-analysis of α-synuclein
multiplication in familial parkinsonism. Front Neurol 2018;9:1021. DOI PubMed PMC
31. Nelson MP, Tse TE, O'Quinn DB, et al. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the
brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2014;2:20. DOI PubMed PMC
32. Bangari DS, Ashe KM, Desnick RJ, et al. α-galactosidase A knockout mice: progressive organ pathology resembles the type 2 later-
onset phenotype of fabry disease. Am J Pathol 2015;185:651-65. DOI
33. Noben-Trauth K, Neely H, Brady RO. Normal hearing in alpha-galactosidase A-deficient mice, the mouse model for fabry disease.
Hear Res 2007;234:10-4. DOI PubMed
34. Schiffmann R, Hughes DA, Linthorst GE, et al; Conference Participants. Screening, diagnosis, and management of patients with fabry
disease: conclusions from a "kidney disease: improving global outcomes" (KDIGO) controversies conference. Kidney Int 2017;91:284-
93. DOI
35. Schiffmann R. Enzyme replacement in fabry disease: the essence is in the kidney. Ann Intern Med 2007;146:142-4. DOI PubMed
36. Suarez MLG, Thongprayoon C, Hansrivijit P, et al. Outcomes of kidney transplantation in fabry disease: a meta-analysis. Diseases
2020;9:2. DOI PubMed PMC
37. Pieroni M, Moon JC, Arbustini E, et al. Cardiac involvement in fabry disease: JACC review topic of the week. J Am Coll Cardiol
2021;77:922-36. DOI
38. Moore DF, Kaneski CR, Askari H, Schiffmann R. The cerebral vasculopathy of fabry disease. J Neurol Sci 2007;257:258-63. DOI
PubMed
39. Burand AJ Jr, Stucky CL. Fabry disease pain: patient and preclinical parallels. Pain 2021;162:1305-21. DOI PubMed PMC
40. Orsborne C, Black N, Naish JH, et al. Disease-specific therapy for the treatment of the cardiovascular manifestations of fabry disease:
a systematic review. Heart 2024;110:19-26. DOI
41. Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry
disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep 2019;19:100454. DOI PubMed PMC
42. Ramaswami U, Beck M, Hughes D, et al; FOS Study Group. Cardio- renal outcomes with long- term agalsidase alfa enzyme
replacement therapy: a 10- year fabry outcome survey (FOS) analysis. Drug Des Devel Ther 2019;13:3705-15. DOI PubMed PMC
43. Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in fabry disease after one year of
enzyme replacement therapy. Circ Cardiovasc Imaging 2019;12:e009430. DOI PubMed PMC
44. Shen JS, Busch A, Day TS, et al. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme
deficiency in fabry mice. J Inherit Metab Dis 2016;39:293-303. DOI PubMed PMC
45. Lenders M, Brand E. Mechanisms of neutralizing anti-drug antibody formation and clinical relevance on therapeutic efficacy of
enzyme replacement therapies in fabry disease. Drugs 2021;81:1969-81. DOI PubMed PMC
46. Nowak A, Dormond O, Monzambani V, Huynh-Do U, Barbey F. Agalsidase-β should be proposed as first line therapy in classic male
fabry patients with undetectable α-galactosidase A activity. Mol Genet Metab 2022;137:173-8. DOI PubMed
47. Schiffmann R, Swift C, Wang X, Blankenship D, Ries M. A prospective 10-year study of individualized, intensified enzyme
replacement therapy in advanced fabry disease. J Inherit Metab Dis 2015;38:1129-36. DOI
48. Chiesi Global Rare Diseases and Protalix BioTherapeutics Announce FDA Approval of ELFABRIO® (pegunigalsidase alfa-iwxj) for
the Treatment of Fabry Disease. Available from: https://www.prnewswire.com/news-releases/chiesi-global-rare-diseases-and-
protalix-biotherapeutics-announce-fda-approval-of-elfabrio-pegunigalsidase-alfa-iwxj-for-the-treatment-of-fabry-disease-
301820680.html [Last accessed on 18 Jan 2024].
49. European Medicines Agency. Homepage. Available from: https://www.ema.europa.eu/en/homepage [Last accessed on 18 Jan 2024].
50. Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry
disease, provides sustained plasma concentrations and favorable pharmacodynamics: a 1-year Phase 1/2 clinical trial. J Inherit Metab
Dis 2019;42:534-44. DOI
51. Wallace E, Goker-alpan W, Holida B, et al. First results of a head-to-head trial of pegunigalsidase alfa vs. agalsidase beta in Fabry