Page 15 - Read Online
P. 15

Schiffmann. Rare Dis Orphan Drugs J 2024;3:4  https://dx.doi.org/10.20517/rdodj.2023.50  Page 9 of 11

               23.      Medoh UN, Hims A, Chen JY, et al. The Batten disease gene product CLN5 is the lysosomal bis(monoacylglycero)phosphate
                   synthase. Science 2023;381:1182-9.  DOI
               24.      Ilnytska O, Lai K, Gorshkov K, et al. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves
                   lysosomal function, and reduces cholesterol storage. J Biol Chem 2021;297:100813.  DOI  PubMed  PMC
               25.      Chen JYS, Chua D, Lim CO, Ho WX, Tan NS. Lessons on drug development: a literature review of challenges faced in nonalcoholic
                   fatty liver disease (NAFLD) clinical Trials. Int J Mol Sci 2022;24:158.  DOI  PubMed  PMC
               26.      Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling.
                   Circ Res 2018;122:877-902.  DOI  PubMed  PMC
               27.      Bassoy EY, Walch M, Martinvalet D. Reactive oxygen species: do they play a role in adaptive immunity? Front Immunol
                   2021;12:755856.  DOI  PubMed  PMC
               28.      Bozic M, Caus M, Rodrigues-Diez RR, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney
                   fibrosis. Nat Commun 2020;11:1943.  DOI  PubMed  PMC
               29.      Oliveira LM, Falomir-Lockhart LJ, Botelho MG, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal
                   differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis 2015;6:e1994.  DOI
                   PubMed  PMC
               30.      Book A, Guella I, Candido T, et al; SNCA Multiplication investigators of the GEoPD consortium. A meta-analysis of α-synuclein
                   multiplication in familial parkinsonism. Front Neurol 2018;9:1021.  DOI  PubMed  PMC
               31.      Nelson MP, Tse TE, O'Quinn DB, et al. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the
                   brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2014;2:20.  DOI  PubMed  PMC
               32.      Bangari DS, Ashe KM, Desnick RJ, et al. α-galactosidase A knockout mice: progressive organ pathology resembles the type 2 later-
                   onset phenotype of fabry disease. Am J Pathol 2015;185:651-65.  DOI
               33.      Noben-Trauth K, Neely H, Brady RO. Normal hearing in alpha-galactosidase A-deficient mice, the mouse model for fabry disease.
                   Hear Res 2007;234:10-4.  DOI  PubMed
               34.      Schiffmann R, Hughes DA, Linthorst GE, et al; Conference Participants. Screening, diagnosis, and management of patients with fabry
                   disease: conclusions from a "kidney disease: improving global outcomes" (KDIGO) controversies conference. Kidney Int 2017;91:284-
                   93.  DOI
               35.      Schiffmann R. Enzyme replacement in fabry disease: the essence is in the kidney. Ann Intern Med 2007;146:142-4.  DOI  PubMed
               36.      Suarez MLG, Thongprayoon C, Hansrivijit P, et al. Outcomes of kidney transplantation in fabry disease: a meta-analysis. Diseases
                   2020;9:2.  DOI  PubMed  PMC
               37.      Pieroni M, Moon JC, Arbustini E, et al. Cardiac involvement in fabry disease: JACC review topic of the week. J Am Coll Cardiol
                   2021;77:922-36.  DOI
               38.      Moore DF, Kaneski CR, Askari H, Schiffmann R. The cerebral vasculopathy of fabry disease. J Neurol Sci 2007;257:258-63.  DOI
                   PubMed
               39.     Burand AJ Jr, Stucky CL. Fabry disease pain: patient and preclinical parallels. Pain 2021;162:1305-21.  DOI  PubMed  PMC
               40.      Orsborne C, Black N, Naish JH, et al. Disease-specific therapy for the treatment of the cardiovascular manifestations of fabry disease:
                   a systematic review. Heart 2024;110:19-26.  DOI
               41.      Germain DP, Elliott PM, Falissard B, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry
                   disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep 2019;19:100454.  DOI  PubMed  PMC
               42.      Ramaswami U, Beck M, Hughes D, et al; FOS Study Group. Cardio- renal outcomes with long- term agalsidase alfa enzyme
                   replacement therapy: a 10- year fabry outcome survey (FOS) analysis. Drug Des Devel Ther 2019;13:3705-15.  DOI  PubMed  PMC
               43.      Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in fabry disease after one year of
                   enzyme replacement therapy. Circ Cardiovasc Imaging 2019;12:e009430.  DOI  PubMed  PMC
               44.      Shen JS, Busch A, Day TS, et al. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme
                   deficiency in fabry mice. J Inherit Metab Dis 2016;39:293-303.  DOI  PubMed  PMC
               45.      Lenders M, Brand E. Mechanisms of neutralizing anti-drug antibody formation and clinical relevance on therapeutic efficacy of
                   enzyme replacement therapies in fabry disease. Drugs 2021;81:1969-81.  DOI  PubMed  PMC
               46.      Nowak A, Dormond O, Monzambani V, Huynh-Do U, Barbey F. Agalsidase-β should be proposed as first line therapy in classic male
                   fabry patients with undetectable α-galactosidase A activity. Mol Genet Metab 2022;137:173-8.  DOI  PubMed
               47.      Schiffmann R, Swift C, Wang X, Blankenship D, Ries M. A prospective 10-year study of individualized, intensified enzyme
                   replacement therapy in advanced fabry disease. J Inherit Metab Dis 2015;38:1129-36.  DOI
               48.      Chiesi Global Rare Diseases and Protalix BioTherapeutics Announce FDA Approval of ELFABRIO® (pegunigalsidase alfa-iwxj) for
                   the  Treatment  of  Fabry  Disease.  Available  from:  https://www.prnewswire.com/news-releases/chiesi-global-rare-diseases-and-
                   protalix-biotherapeutics-announce-fda-approval-of-elfabrio-pegunigalsidase-alfa-iwxj-for-the-treatment-of-fabry-disease-
                   301820680.html [Last accessed on 18 Jan 2024].
               49.      European Medicines Agency. Homepage. Available from: https://www.ema.europa.eu/en/homepage [Last accessed on 18 Jan 2024].
               50.      Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry
                   disease, provides sustained plasma concentrations and favorable pharmacodynamics: a 1-year Phase 1/2 clinical trial. J Inherit Metab
                   Dis 2019;42:534-44.  DOI
               51.      Wallace E, Goker-alpan W, Holida B, et al. First results of a head-to-head trial of pegunigalsidase alfa vs. agalsidase beta in Fabry
   10   11   12   13   14   15   16   17   18   19   20