Page 41 - Read Online
P. 41
Page 14 of 14 Bros-Facer et al. Rare Dis Orphan Drugs J 2023;2:21 https://dx.doi.org/10.20517/rdodj.2023.26
7. Krantz ID, Medne L, Weatherly JM, et al; NICUSeq Study Group. Effect of whole-genome sequencing on the clinical management of
acutely Ill infants with suspected genetic disease: a randomized clinical trial. JAMA Pediatr 2021;175:1218-26. DOI PubMed PMC
8. Petrikin JE, Cakici JA, Clark MM, et al. The NSIGHT1-randomized controlled trial: rapid whole-genome sequencing for accelerated
etiologic diagnosis in critically Ill infants. NPJ Genom Med 2018;3:6. DOI
9. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization.
NPJ Genom Med 2018;3:10. DOI PubMed PMC
10. Mestek-Boukhibar L, Clement E, Jones WD, et al. Rapid paediatric sequencing (RaPS): comprehensive real-life workflow for rapid
diagnosis of critically ill children. J Med Genet 2018;55:721-8. DOI PubMed PMC
11. van Diemen CC, Kerstjens-Frederikse WS, Bergman KA, et al. Rapid targeted genomics in critically Ill newborns. Pediatrics
2017;140:e20162854. DOI
12. Willig LK, Petrikin JE, Smith LD, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a
retrospective analysis of diagnostic and clinical findings. Lancet Respir Med 2015;3:377-87. DOI PubMed PMC
13. Ceyhan-Birsoy O, Murry JB, Machini K, et al; BabySeq Project Team. Interpretation of genomic sequencing results in healthy and Ill
newborns: results from the BabySeq project. Am J Hum Genet 2019;104:76-93. DOI
14. Dimmock DP, Clark MM, Gaughran M, et al; RCIGM Investigators. An RCT of rapid genomic sequencing among seriously Ill infants
results in high clinical utility, changes in management, and low perceived harm. Am J Hum Genet 2020;107:942-52. DOI PubMed
PMC
15. Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH. An online compendium of treatable genetic disorders. Am J Med
Genet C Semin Med Genet 2021;187:48-54. DOI PubMed PMC
16. Owen MJ, Lefebvre S, Hansen C, et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for
genetic diseases. Nat Commun 2022;13:4057. DOI PubMed PMC
17. GUARDIAN Study. Available from: https://guardian-study.org [Last accessed on 27 Sep 2023].
18. BeginNGS. Available from: https://radygenomics.org/begin-ngs-newborn-sequencing/ [Last accessed on Last accessed on 27 Sep
2023].
19. Early Check. Available from: https://earlycheck.org/news-and-outreach/newsroom/ [Last accessed on 27 Sep 2023].
20. Screen4Care (European Union). Available from: https://screen4care.eu/ [Last accessed on 27 Sep 2023].
21. Pichini A, Ahmed A, Patch C, et al. Developing a national newborn genomes program: an approach driven by ethics, engagement and
co-design. Front Genet 2022;13:866168. DOI PubMed PMC
22. The UK Newborn Genomes Programme. Available from: https://www.genomicsengland.co.uk/initiatives/newborns [Last accessed on
27 Sep 2023].
23. Baby Detect. Available from: https://babydetect.com [Last accessed on 27 Sep 2023].
24. Stark Z, Scott RH. Genomic newborn screening for rare diseases. Nat Rev Genet 2023;24:755-66. DOI PubMed
25. Wilson JMG, Jungner G; World Health Organization. Principles and practice of screening for disease. Geneva: World Health
Organization; 1968. Available from: https://policycommons.net/artifacts/537214/principles-and-practice-of-screening-for-disease-
j/1513770/ [Last accessed on 27 Sep 2023].
26. Key principles for newborn screening (2021). Available from: https://www.eurordis.org/publications/key-principles-for-newborn-
screening/ [Last accessed on 27 Sep 2023].
27. Balciuniene J, Liu R, Bean L, et al. At-risk genomic findings for pediatric-onset disorders from genome sequencing vs medically
actionable gene panel in proactive screening of newborns and children. JAMA Netw Open 2023;6:e2326445. DOI PubMed PMC
28. Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of
sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology. Genet Med 2015;17:405-24. DOI PubMed PMC
29. Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem 2015;61:124-35. DOI PubMed
30. Owen MJ, Niemi AK, Dimmock DP, et al. Rapid sequencing-based diagnosis of thiamine metabolism dysfunction syndrome. N Engl J
Med 2021;384:2159-61. DOI PubMed PMC
31. Austin-Tse CA, Jobanputra V, Perry DL, et al; Medical Genome Initiative*. Best practices for the interpretation and reporting of
clinical whole genome sequencing. NPJ Genom Med 2022;7:27. DOI PubMed PMC
32. Souche E, Beltran S, Brosens E, et al. Recommendations for whole genome sequencing in diagnostics for rare diseases. Eur J Hum
Genet 2022;30:1017-21. DOI PubMed PMC
33. Nurchis MC, Riccardi MT, Radio FC, et al. Incremental net benefit of whole genome sequencing for newborns and children with
suspected genetic disorders: systematic review and meta-analysis of cost-effectiveness evidence. Health Policy 2022;126:337-45. DOI
34. NIH National Human Genome Research Institute. DNA Sequencing Costs: data. Available from: https://www.genome.gov/about-
genomics/fact-sheets/DNA-Sequencing-Costs-Data [Last accessed on 27 Sep 2023].
35. Incerti D, Xu XM, Chou JW, Gonzaludo N, Belmont JW, Schroeder BE. Cost-effectiveness of genome sequencing for diagnosing
patients with undiagnosed rare genetic diseases. Genet Med 2022;24:109-18. DOI PubMed
36. Implications of whole genome sequencing for newborn screening-a public dialogue. Available from: https://files.genomicsengland.co.
uk/documents/public-dialogue-wgs-for-nbs-final-report.pdf [Last accessed on 27 Sep 2023].