Page 32 - Read Online
P. 32

Page 14 of 15                                          Crowe et al. Plast Aesthet Res 2019;6:4  I  http://dx.doi.org/10.20517/2347-9264.2018.70

               35.  Sanders JE, Greve JM, Mitchell SB, Zachariah SG. Material properties of commonly-used interface materials and their static coefficients
                   of friction with skin and socks. J Rehabil Res Dev 1998;35:161-76.
               36.  Hachisuka K, Matsushima Y, Ohmine S, Shitama H, Shinkoda K. Moisture permeability of the total surface bearing prosthetic socket with
                   a silicone liner: is it superior to the patella-tendon bearing prosthetic socket? J UOEH 2001;23:225-32.
               37.  Klute  GK,  Rowe  GI,  Mamishev  AV,  Ledoux  WR.  The  thermal  conductivity  of  prosthetic  sockets  and  liners.  Prosthet  Orthot  Int
                   2007;31:292-9.
               38.  Sanders JE, Nicholson BS, Zachariah SG, Cassisi DV, Karchin A, et al. Testing of elastomeric liners used in limb prosthetics: classification
                   of 25 products by mechanical performance. J Rehabil Res Dev 2004;41:175-86.
               39.  Powers CM, Torburn L, Perry J, Ayyappa E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee
                   amputations. Arch Phys Med Rehabil 1994;75:825-9.
               40.  Casillas JM, Dulieu V, Cohen M, Marcer I, Didier JP. Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic
                   below-knee vascular amputations. Arch Phys Med Rehabil 1995;76:39-44.
               41.  Snyder RD, Powers CM, Fontaine C, Perry J. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular
                   below-knee amputees. J Rehabil Res Dev 1995;32:309-15.
               42.  Postema K, Hermens HJ, de Vries J, Koopman HF, Eisma WH. Energy storage and release of prosthetic feet. Part 1: biomechanical
                   analysis related to user benefits. Prosthet Orthot Int 1997;21:17-27.
               43.  Perry J, Boyd LA, Rao SS, Mulroy SJ. Prosthetic weight acceptance mechanics in transtibial amputees wearing the Single Axis, Seattle
                   Lite, and Flex-Foot. IEEE Trans Rehabil Eng 1997;5:283-9.
               44.  Huang GF, Chou YL, Su FC. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet. Gait
                   Posture 2000;12:162-8.
               45.  Wagner FW. Management of the diabetic neurotrophic foot. Part II. A classification and treatment program for diabetic, neuropathic, and
                   dysvascular foot problems. Instructional course lectures 1979;28:143-65.
               46.  Pinzur MS. Bowker JH. Knee disarticulation. Clin Orthop Relat Res 1999;361:23-28.
               47.  Pinzur  MS,  Smith  DG,  Daluga  DJ,  Osterman  H.  Selection  of  patients  for  through-the-knee  amputation.  J  Bone  Joint  Surg  Am
                   1988;70:746-50.
               48.  Gottschalk F. Transfemoral amputation. Biomechanics and surgery. Clin Orthop Relat Res 1999;361:15-22.
               49.  Volpicelli LJ, Chambers RB, Wagner FW. Ambulation levels of bilateral lower-extremity amputees. Analysis of one hundred and three
                   cases. J Bone Joint Surg Am 1983;65:599-605.
               50.  Tan J. Practical manual of physical medicine and rehabilitation, 2nd ed. Philadelphia, PA: Elsevier Mosby; 2006. pp. 257-9.
               51.  Hafner  BJ,  Smith  DG.  Differences  in  function  and  safety  between  Medicare  Functional  Classification  Level-2  and  -3  transfemoral
                   amputees and influence of prosthetic knee joint control. J Rehabil Res Dev 2009;46:417-33.
               52.  Helfet DL, Howey T, Sanders R, Johansen K. Limb salvage versus amputation: Preliminary results of Mangled Extremity Severity Score.
                   Clin Orthop 1990;256:80-6.
               53.  Howe HR Jr, Poole GV Jr, Hansen KJ, Clark T, Plonk GW, Koman LA, Pennell TC. Salvage of lower extremities following combined
                   orthopedic and vascular trauma. A predictive salvage index. Am Surg 1987;53:205-8.
               54.  Russell WL, Sailors DM, Whittle TB, Fisher DF Jr, Burns RP. Limb salvage versus traumatic amputation: A decision based on a seven-
                   part predictive index. Ann Surg 1991;213:473-81.
               55.  McNamara MG, Heckman JD, Corley EG. Severe open fracture of the lower extremity: a retrospective evaluation of Mangled Extremity
                   Severity Score. J Orthop Trauma 1994;8:81-7.
               56.  Tscherne H, Oestern HJ. A new classification of soft tissue damage in open and closed fractures. Unfallheilkunde 1982;85:111-5.
               57.  Johansen K, Daines M, Howey T, Helfet D, Hansen ST Jr. Objective criteria accurately predict amputation following extremity trauma. J
                   Trauma 1990;30:568-73.
               58.  Ong YS, Levin LS. Lower limb salvage in trauma. Plast Reconstr Surg 2010;125:582-8.
               59.  Chen WP, Ju CW, Tang FT. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clin Biomech
                   2003;18:S17-24.
               60.  Tang SF, Chen CP, Hong WH, Chen HT, Chu NK, et al. Improvement of gait by using orthotic insoles in patients with heel injury who
                   received reconstructive flap operations. Am J Phys Med Rehabil 2003;82:350-6.
               61.  Chen JT, Tang AC, Hong WH, Tang SF. The effects of heel-elevated total contact insole on rearfoot pressure reduction in heel injury patients
                   who had neurosensory impairment after receiving reconstructive flap operations. Clin Neurol Neurosurg. 2015;129 Suppl 1:S47-52.
               62.  Koller C, Arch ES. State of the prescription process for dynamic ankle-foot orthoses. Curr Phys Med Rehabil Rep 2018;6:55-61.
               63.  Wach A,  McGrady  L,  Wang  M,  Silver-Thorn  B. Assessment  of  mechanical  characteristics  of  ankle-foot  orthoses.  J  Biomech  Eng
                   2018;140.
               64.  Highsmith MJ, Nelson LM, Carbone NT, Klenow TD, Kahle JT, et al. Outcomes associated with the intrepid dynamic exoskeletal orthosis
                   (IDEO): a systematic review of the literature. Mil Med 2016;181:69-76.
               65.  Patzkowski JC, Blanck RV, Owens JG, Wilken JM, Blair JA, et al. Can an ankle-foot orthosis change hearts and minds? J Surg Orthop
                   Adv 2011;20:8-18.
               66.  Blair JA, Patzkowski JC, Blanck RV, Owens JG, Hsu JR, et al. Return to duty after integrated orthotic and rehabilitation initiative. J
                   Orthop Trauma 2014;28:e70-4.
               67.  Kannenberg A, Zacharias B, Pröbsting E. Benefits of microprocessor prosthetic knees to limited community ambulators: a systematic
                   review. J Rehabil Res Dev 2014;51:1469-95.
               68.  Sawers, AB,  Hafner,  BJ.  Outcomes  associated  with  the  use  of  microprocessor-controlled  prosthetic  knees  among  individuals  with
                   unilateral transfemoral limb loss: a systematic review. J Rehab Res Dev 2013;50:273-314.
               69.  Fuenzalida Squella SA, Kannenberg A, Brandão Benetti Â. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase
   27   28   29   30   31   32   33   34   35   36   37