Page 35 - Read Online
P. 35
Walker. Neuroimmunol Neuroinflammation 2020;7:194-214 I http://dx.doi.org/10.20517/2347-8659.2020.09 Page 213
associated with late-onset Alzheimer’s disease. Nat Genet 2011;43:436-41.
76. Walker DG, Whetzel AM, Serrano G, Sue LI, Beach TG, et al. Association of CD33 polymorphism rs3865444 with Alzheimer’s disease
pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 2015;36:571-82.
77. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake
of amyloid beta. Neuron 2013;78:631-43.
78. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, et al. CD33 Alzheimer’s disease locus: altered monocyte function and
amyloid biology. Nat Neurosci 2013;16:848-50.
79. Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabian G, et al. High glucose concentrations induce TNF-alpha production
through the down-regulation of CD33 in primary human monocytes. BMC Immunol 2012;13:19.
80. Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, et al. TREM2 Acts downstream of CD33 in modulating microglial pathology in
Alzheimer’s disease. Neuron 2019;103:820-35.e7.
81. Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, et al. Progranulin expression correlates with dense-core amyloid
plaque burden in Alzheimer disease mouse models. J Pathol 2009;219:173-81.
82. Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, et al. Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s
disease mouse models. Nat Med 2014;20:1157-64.
83. Mendsaikhan A, Tooyama I, Bellier JP, Serrano GE, Sue LI, et al. Characterization of lysosomal proteins progranulin and prosaposin and
their interactions in Alzheimer’s disease and aged brains: increased levels correlate with neuropathology. Acta Neuropathol Commun
2019;7:215.
84. Mendsaikhan A, Tooyama I, Walker DG. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases.
Cells 2019;8.
85. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by
microglia via complement activation. Cell 2016;165:921-35.
86. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated
microglial activation. J Neurosci 2009;29:11982-92.
87. Chen K, Iribarren P, Hu J, Chen J, Gong W, et al. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer
disease-associated amyloid beta peptide. J Biol Chem 2006;281:3651-9.
88. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, et al. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-
peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008;213:114-21.
89. Scholtzova H, Chianchiano P, Pan J, Sun Y, Goni F, et al. Amyloid beta and Tau Alzheimer’s disease related pathology is reduced by Toll-
like receptor 9 stimulation. Acta Neuropathol Commun 2014;2:101.
90. Bsibsi M, Bajramovic JJ, Vogt MHJ, van Duijvenvoorden E, Baghat A, et al. The microtubule regulator stathmin is an endogenous protein
agonist for TLR3. J Immunol 2010;184:6929-37.
91. Walker DG, Tang TM, Lue LF. Increased expression of toll-like receptor 3, an anti-viral signaling molecule, and related genes in
Alzheimer’s disease brains. Exp Neurol 2018;309:91-106.
92. Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, et al. Differential expression and regulation of toll-like receptors (TLR)
in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000;164:5998-6004.
93. Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, et al. Interleukin-34, a comprehensive review. J Leukoc Biol 2018;104:931-51.
94. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, et al. Colony-stimulating factor 1 receptor signaling is necessary for
microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014;82:380-97.
95. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss
without modulating amyloid-beta pathology. Brain 2016;139:1265-81.
96. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, et al. Sustained microglial depletion with CSF1R inhibitor impairs
parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 2019;10:3758.
97. Nissen JC, Thompson KK, West BL, Tsirka SE. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes
recovery. Exp Neurol 2018;307:24-36.
98. Bennett RE, Bryant A, Hu M, Robbins AB, Hopp SC, et al. Partial reduction of microglia does not affect tau pathology in aged mice. J
Neuroinflammation 2018;15:311.
99. Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation
and prevents the progression of Alzheimer’s-like pathology. Brain 2016;139:891-907.
100. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, et al. Expression of the receptor for macrophage colony stimulating factor
by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res
1994;639:171-4.
101. Walker DG, Tang TM, Lue LF. Studies on colony stimulating factor receptor-1 and ligands colony stimulating factor-1 and Interleukin-34
in Alzheimer’s disease brains and human microglia. Front Aging Neurosci 2017;9:244.
102. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons
facilitates protection and survival. J Exp Med 2013;210:157-72.
103. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol
2009;27:451-83.
104. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4)
prior to nuclear translocation of NF-kappa B. J Immunol 2000;165:3541-4.