Page 50 - Read Online
P. 50

Page 118           Zhang et al. Neuroimmunol Neuroinflammation 2020;7:109-19  I  http://dx.doi.org/10.20517/2347-8659.2019.018

                   necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin
                   Neurol Neurosurg 2016;146:76-81.
               47.  Li X, Miyajima M, Jiang C, Arai H. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with
                   idiopathic normal pressure hydrocephalus. Neurosci Lett 2007;413:141-4.
               48.  Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal fluid biomarkers as predictors of shunt response in idiopathic normal pressure
                   hydrocephalus: a systematic review. Can J Neurol Sci 2018;45:3-10.
               49.  Zhang X, Huang WJ, Chen WW. TGF-beta1 factor in the cerebrovascular diseases of Alzheimer’s disease. Eur Rev Med Pharmacol Sci
                   2016;20:5178-85.
               50.  Crawley JT, Goulding DA, Ferreira V, Severs NJ, Lupu F. Expression and localization of tissue factor pathway inhibitor-2 in normal and
                   atherosclerotic human vessels. Arterioscler Thromb Vasc Biol 2002;22:218-24.
               51.  Sosvorova L, Vcelak J, Mohapl M, Vitku J, Bicikova M, et al. Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in
                   normal pressure hydrocephalus. Neuro Endocrinol Lett 2014;35:586-93.
               52.  Sosvorova L, Mohapl M, Vcelak J, Hill M, Vitku J, et al. The impact of selected cytokines in the follow-up of normal pressure
                   hydrocephalus. Physiol Res 2015;64:S283-90.
               53.  Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to
                   diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther 2015;7:59.
               54.  Poca MA, Mataró M, Sahuquillo J, Catalán R, Ibañez J, et al. Shunt related changes in somatostatin, neuropeptide Y, and corticotropin
                   releasing factor concentrations in patients with normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2001;70:298-304.
               55.  Tisell M, Tullberg M, Mansson JE, Fredman P, Blennow K, et al. Differences in cerebrospinal fluid dynamics do not affect the levels
                   of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. Eur J
                   Neurol 2004;11:17-23.
               56.  Wikkelsö C, Ekman R, Westergren I, Johansson B. Neuropeptides in cerebrospinal fluid in normal-pressure hydrocephalus and dementia.
                   Eur Neurol 1991;31:88-93.
               57.  Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, et al. CSF sulfatide distinguishes between normal pressure hydrocephalus
                   and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 2000;69:74-81.
               58.  Nooijen PT, Schoonderwaldt HC, Wevers RA, Hommes OR, Lamers KJ. Neuron-specific enolase, S-100 protein, myelin basic protein
                   and lactate in CSF in dementia. Dement Geriatr Cogn Disord 1997;8:169-73.
               59.  Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, et al. Cognitive, biochemical, and imaging profile of patients suffering from
                   idiopathic normal pressure hydrocephalus. Alzheimers Dement 2011;7:501-8.
               60.  Fersten E, Gordon-Krajcer W, Glowacki M, Mroziak B, Jurkiewicz J, et al. Cerebrospinal fluid free-radical peroxidation products and
                   cognitive functioning patterns differentiate varieties of normal pressure hydrocephalus. Folia Neuropathol 2004;42:133-40.
               61.  Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7:41-53.
               62.  Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2015;38:598-608.
               63.  Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, et al. Increased blood-brain barrier permeability is associated with dementia and
                   diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 2017;51:104-12.
               64.  Eide PK, Pripp AH. Increased prevalence of cardiovascular disease in idiopathic normal pressure hydrocephalus patients compared to a
                   population-based cohort from the HUNT3 survey. Fluids Barriers CNS 2014;11:19.
               65.  Krauss JK, Regel JP, Vach W, Orszagh M, Jungling FD, et al. White matter lesions in patients with idiopathic normal pressure
                   hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 1997;40:491-5.
               66.  Jaraj D, Agerskov S, Rabiei K, Marlow T, Jensen C, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-
                   based study. Neurology 2016;86:592-9.
               67.  Graff-Radford NR, Knopman DS, Penman AD, Coker LH, Mosley TH. Do systolic BP and pulse pressure relate to ventricular
                   enlargement? Eur J Neurol 2013;20:720-4.
               68.  Miyajima M, Nakajima M, Ogino I, Miyata H, Motoi Y, et al. Soluble amyloid precursor protein alpha in the cerebrospinal fluid as a
                   diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur J Neurol 2013;20:236-42.
               69.  Mashayekhi F, Salehi Z. Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur J
                   Neurol 2005;12:632-7.
               70.  Yang JT, Chang CN, Hsu YH, Wei KC, Lin TK, et al. Increase in CSF NGF concentration is positively correlated with poor prognosis of
                   postoperative hydrocephalic patients. Clin Biochem 1999;32:673-5.
               71.  Del Bigio MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol 1993;85:573-85.
               72.  Li X, Miyajima M, Mineki R, Taka H, Murayama K, et al. Analysis of cerebellum proteomics in the hydrocephalic H-Tx rat. Neuroreport
                   2005;16:571-4.
               73.  Yang J, Dombrowski SM, Krishnan C, Krajcir N, Deshpande A, et al. Vascular endothelial growth factor in the CSF of elderly
                   patients with ventriculomegaly: variability, periodicity and levels in drainage responders and non-responders. Clin Neurol Neurosurg
                   2013;115:1729-34.
               74.  Yang J, Shanahan KJ, Shriver LP, Luciano MG. Exercise-induced changes of cerebrospinal fluid vascular endothelial growth factor in
                   adult chronic hydrocephalus patients. J Clin Neurosci 2016;24:52-6.
               75.  Huang H, Yang J, Luciano M, Shriver LP. Longitudinal metabolite profiling of cerebrospinal fluid in normal pressure hydrocephalus links
                   brain metabolism with exercise-induced VEGF production and clinical outcome. Neurochem Res 2016;41:1713-22.
               76.  Bartosik-Psujek H, Stelmasiak Z. Biochemical markers of damage of the central nervous system in multiple sclerosis. Ann Univ Mariae
   45   46   47   48   49   50   51   52   53   54   55