Page 38 - Read Online
P. 38

Page 106           Jayanti et al. Neuroimmunol Neuroinflammation 2020;7:92-108  I  http://dx.doi.org/10.20517/2347-8659.2019.14

               75.  Sekine H, Mimura J, Oshima M, Okawa H, Kanno J, et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to
                   lipopolysaccharide-induced septic shock. Mol Cell Biol 2009;29:6391-400.
               76.  Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, et al. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced
                   inflammatory responses. J Exp Med 2009;206:2027-35.
               77.  Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell
                   immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 2010;107:19961-6.
               78.  Lee SS, Gao W, Mazzola S, Thomas MN, Csizmadia E, et al. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in
                   recipients toward islet allografts by modulating T regulatory cells. FASEB J 2007;21:3450-7.
               79.  Deng J, Liang XM, Zhang XL, Ling SQ, Yang TT, et al. Relationship between serum bilirubin levels and optic neuritis. Chin Med J (Engl)
                   2013;126:3307-10.
               80.  Peng F, Yang Y, Liu J, Jiang Y, Zhu C, et al. Low antioxidant status of serum uric acid, bilirubin and albumin in patients with
                   neuromyelitis optica. Eur J Neurol 2012;19:277-83.
               81.  Wang X, Jiao W, Lin M, Lu C, Liu C, et al. Resolution of inflammation in neuromyelitis optica spectrum disorders. Mult Scler Relat
                   Disord 2019;27:34-41.
               82.  Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica.
                   Neurology 2006;66:1485-9.
               83.  Tsoi VL, Hill KE, Carlson NG, Warner JE, Rose JW. Immunohistochemical evidence of inducible nitric oxide synthase and nitrotyrosine
                   in a case of clinically isolated optic neuritis. J Neuroophthalmol 2006;26:87-94.
               84.  Cho HC. The Relationship among Homocysteine, Bilirubin, and Diabetic Retinopathy. Diabetes Metab J 2011;35:595-601.
               85.  Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, et al. Aldose reductase inhibition prevents glucose-induced apoptosis in
                   cultured bovine retinal microvascular pericytes. Exp Eye Res 2000;71:309-15.
               86.  Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 2013;20:3218-25.
               87.  Peng F, Deng X, Yu Y, Chen X, Shen L, et al. Serum bilirubin concentrations and multiple sclerosis. J Clin Neurosci 2011;18:1355-9.
               88.  Li RY, Cao ZG, Zhang JR, Li Y, Wang RT. Decreased serum bilirubin is associated with silent cerebral infarction. Arterioscler Thromb
                   Vasc Biol 2014;34:946-51.
               89.  Higuchi S, Kabeya Y, Uchida J, Kato K, Tsukada N. Low bilirubin levels indicate a high risk of cerebral deep white matter lesions in
                   apparently healthy subjects. Sci Rep 2018;8:6473.
               90.  Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-
                   matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 2000;356:628-34.
               91.  Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review
                   and meta-analysis. BMJ 2010;341:c3666.
               92.  Suwanwela NC, Chutinetr A. Risk factors for atherosclerosis of cervicocerebral arteries: intracranial versus extracranial.
                   Neuroepidemiology 2003;22:37-40.
               93.  Wong KS, Li H, Chan YL, Ahuja A, Lam WW, et al. Use of transcranial Doppler ultrasound to predict outcome in patients with
                   intracranial large-artery occlusive disease. Stroke 2000;31:2641-7.
               94.  Zhong K, Wang X, Ma X, Ji X, Sang S, et al. Association between serum bilirubin and asymptomatic intracranial atherosclerosis: results
                   from a population-based study. Neurol Sci 2020; Epub ahead of print. doi: 10.1007/s10072-020-04268-x
               95.  Jian Y, Zhao L, Wang H, Li T, Zhang L, et al. Bilirubin: a novel predictor of hemorrhagic transformation and symptomatic intracranial
                   hemorrhage after mechanical thrombectomy. Neurol Sci 2019; Epub ahead of print. doi:10.1007/s10072-019-04182-x
               96.  Ishikawa K, Navab M, Leitinger N, Fogelman AM, Lusis AJ. Induction of heme oxygenase-1 inhibits the monocyte transmigration
                   induced by mildly oxidized LDL. J Clin Invest 1997;100:1209-16.
               97.  Kawamura K, Ishikawa K, Wada Y, Kimura S, Matsumoto H, et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial
                   activation and dysfunction. Arterioscler Thromb Vasc Biol 2005;25:155-60.
               98.  Ollinger R, Bilban M, Erat A, Froio A, McDaid J, et al. Bilirubin: a natural inhibitor of vascular smooth muscle cell proliferation.
                   Circulation 2005;112:1030-9.
               99.  Pae HO, Oh GS, Lee BS, Rim JS, Kim YM, et al. 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte
                   chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human
                   umbilical vein endothelial cells. Atherosclerosis 2006;187:274-84.
               100. Basiglio CL, Arriaga SM, Pelusa HF, Almará AM, Roma MG, et al. Protective role of unconjugated bilirubin on complement-mediated
                   hepatocytolysis. Biochim Biophys Acta 2007;1770:1003-10.
               101. Vĕtvicka V, Miler I, Síma P, Táborský L, Fornůsek L. The effect of bilirubin on the Fc receptor expression and phagocytic activity of
                   mouse peritoneal macrophages. Folia Microbiol (Praha) 1985;30:373-80.
               102. Dohi K, Satoh K, Ohtaki H, Shioda S, Miyake Y, et al. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its
                   pathophysiological role in free radical scavenging. In Vivo 2005;19:855-60.
               103. Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007;130:1643-52.
               104. Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, Pedraza-Chaverrí J. Heme oxygenase-1 induction prevents neuronal damage
                   triggered during mitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol 2009;41:1304-14.
               105. Zhao Q, Qu R, Teng L, Yin C, Yuan Y. HO-1 protects the nerves of rats with cerebral hemorrhage by regulating the PI3K/AKT signaling
                   pathway. Neuropsychiatr Dis Treat 2019;15:1459-68.
               106. Feng J, Zhang P, Chen X, He G. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in
   33   34   35   36   37   38   39   40   41   42   43