Page 37 - Read Online
P. 37
Jayanti et al. Neuroimmunol Neuroinflammation 2020;7:92-108 I http://dx.doi.org/10.20517/2347-8659.2019.14 Page 105
44. Song W, Zukor H, Lin SH, Hascalovici J, Liberman A, et al. Schizophrenia-like features in transgenic mice overexpressing human HO-1
in the astrocytic compartment. J Neurosci 2012;32:10841-53.
45. Macías-García D, Méndez-Del Barrio C, Jesús S, Labrador MA, Adarmes-Gómez A, et al. Increased bilirubin levels in Parkinson’s
disease. Parkinsonism Relat Disord 2019;63:213-6.
46. Moccia M, Picillo M, Erro R, Longo K, Amboni M, et al. Increased bilirubin levels in de novo Parkinson’s disease. Eur J Neurol
2015;22:954-9.
47. Qin XL, Zhang QS, Sun L, Hao MW, Hu ZT. Lower serum bilirubin and uric acid concentrations in patients with Parkinson’s Disease in
China. Cell Biochem Biophys 2015;72:49-56.
48. Scigliano G, Girotti F, Soliveri P, Musicco M, Radice D, et al. Increased plasma bilirubin in Parkinson patients on L-dopa: evidence
against the free radical hypothesis? Ital J Neurol Sci 1997;18:69-72.
49. Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of
engagement. J Neurochem 2009;110:469-85.
50. Cuadrado A, Rojo AI. Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des
2008;14:429-42.
51. Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, et al. Overexpression of heme oxygenase-1 protects dopaminergic neurons against
1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 2008;74:1564-75.
52. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in
Parkinson disease. Nat Med 2003;9:589-95.
53. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, et al. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human
brain. Nat Med 2005;11:703-4.
54. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in
PD: a two-year outcome study. Ann Neurol 2005;57:298-302.
55. Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, et al. Earliest mechanisms of dopaminergic neurons sufferance in a novel slow
progressing ex vivo model of parkinson disease in rat organotypic cultures of substantia nigra. Int J Mol Sci 2019;20:2224.
56. Song W, Kothari V, Velly AM, Cressatti M, Liberman A, et al. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early
Parkinson’s disease. Mov Disord 2018;33:583-91.
57. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, et al. Immunology and oxidative stress
in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013;2013:708659.
58. Gonsette RE. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler 2008;14:22-34.
59. Ljubisavljevic S, Stojanovic I, Vojinovic S, Milojkovic M, Dunjic O, et al. Association of serum bilirubin and uric acid levels changes
during neuroinflammation in patients with initial and relapsed demyelination attacks. Metab Brain Dis 2013;28:629-38.
60. Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent
controversies. Free Radic Res 1999;31:651-69.
61. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, et al. Severe oxidative damage in multiple sclerosis lesions coincides
with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008;45:1729-37.
62. Artemiadis AK, Anagnostouli MC. Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple
sclerosis: possible role for the early stages of multiple sclerosis. Eur Neurol 2010;63:65-72.
63. Kostic MS, Rajkovic JS, Floranovic MSP, Dimov ID, Pavlovic DD. Multiple sclerosis and oxidative stress - a clinical perspective.
Neurochem J 2013;7:76-86.
64. Liu Y, Zhu B, Wang X, Luo L, Li P, et al. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis:
implications for the role of oxidative stress in the development of multiple sclerosis. J Neuroimmunol 2003;139:27-35.
65. Goodin DS. Chapter 21 - Glucocorticoid treatment of multiple sclerosis. In: Goodin DS, editor. Handbook of Clinical Neurology.
Elsevier; 2014. pp. 455-64.
66. Liu Y, Li P, Lu J, Xiong W, Oger J, et al. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental
autoimmune encephalomyelitis. J Immunol 2008;181:1887-97.
67. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, et al. Heme oxygenase-1 and carbon monoxide suppress autoimmune
neuroinflammation. J Clin Invest 2007;117:438-47.
68. Vitek L, Bellarosa C, Tiribelli C. Induction of mild hyperbilirubinemia: hype or real therapeutic opportunity? Clin Pharmacol Ther
2019;106:568-75.
69. Muchova L, Wong RJ, Hsu M, Morioka I, Vitek L, et al. Statin treatment increases formation of carbon monoxide and bilirubin in mice: a
novel mechanism of in vivo antioxidant protection. Can J Physiol Pharmacol 2007;85:800-10.
70. Nguyen NT, Hanieh H, Nakahama T, Kishimoto T. The roles of aryl hydrocarbon receptor in immune responses. Int Immunol
2013;25:335-43.
71. Vítek L. Bilirubin as a signaling molecule. Med Res Rev 2020; Epub ahead of print [PMID: 32017160 DOI: 10.1002/med.21660]
72. Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, et al. Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212
cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci U S A 2013;110:11964-9.
73. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the
development of Th17 cells. Proc Natl Acad Sci U S A 2008;105:9721-6.
74. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon
receptor. Nature 2008;453:65-71.