Page 36 - Read Online
P. 36

Page 104          Jayanti et al. Neuroimmunol Neuroinflammation 2020;7:92-108  I  http://dx.doi.org/10.20517/2347-8659.2019.14

               10.  Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018;154:204-19.
               11.  Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol 2008;3:41-66.
               12.  Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, et al. Immunosenescence of microglia and macrophages: impact on the ageing
                   central nervous system. Brain 2016;139:653-61.
               13.  Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, et al. Cellular senescence and the aging brain. Exp Gerontol 2015;68:3-7.
               14.  Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ. Evidence that aging and amyloid promote microglial cell senescence.
                   Rejuvenation Res 2007;10:61-74.
               15.  Xu L, He D, Bai Y. Microglia-Mediated Inflammation and Neurodegenerative Disease. Mol Neurobiol 2016;53:6709-15.
               16.  Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133-9.
               17.  Zhang W, Wang T, Pei Z, Miller DS, Wu X, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression
                   in Parkinson’s disease. FASEB J 2005;19:533-42.
               18.  Bsibsi M, Peferoen LA, Holtman IR, Nacken PJ, Gerritsen WH, et al. Demyelination during multiple sclerosis is associated with
                   combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014;128:215-29.
               19.  Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev
                   2015;2015:610813.
               20.  Brown R, Benveniste H, Black SE, Charpak S, Dichgans M, et al. Understanding the role of the perivascular space in cerebral small
                   vessel disease. Cardiovasc Res 2018;114:1462-73.
               21.  Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 2008;41:345-52.
               22.  Lee H, Choi YK. Regenerative effects of heme oxygenase metabolites on neuroinflammatory diseases. Int J Mol Sci 2018;20:78.
               23.  Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S. Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation
                   and localized TNFalpha-independent inflammatory disease. Genes Dev 2010;24:1709-17.
               24.  Miyaoka T, Seno H, Itoga M, Iijima M, Inagaki T, et al. Schizophrenia-associated idiopathic unconjugated hyperbilirubinemia (Gilbert’s
                   syndrome). J Clin Psychiatry 2000;61:868-71.
               25.  Gama Marques J, Pedro I, Ouakinin S. Unconjugated bilirubin and acute psychosis: a five years retrospective observational and controlled
                   study in patients with schizophrenia, schizoaffective and bipolar disorders. Int J Psychiatry Clin Pract 2019;23:281-5.
               26.  Radhakrishnan R, Kanigere M, Menon J, Calvin S, Janish A, et al. Association between unconjugated bilirubin and schizophrenia.
                   Psychiatry Res 2011;189:480-2.
               27.  Pradeep JR, Acharya MS, Radhakrishnan R, Srinivasan K. Elevated unconjugated bilirubin in schizophrenia compared to bipolar affective
                   disorder. Prim Care Companion CNS Disord 2019;21:19m02448.
               28.  Pommerening Dornelles E, Gama Marques J, Ouakinin S. Unconjugated bilirubin and schizophrenia: a systematic review. CNS Spectr
                   2019;24:577-88.
               29.  Gama Marques J, Ouakinin S. Clinical profile in schizophrenia and schizoaffective spectrum: relation with unconjugated bilirubin in a
                   prospective and controlled study with psychopathological and psychosocial variables. CNS Spectr 2019:1-8.
               30.  Miyaoka T, Seno H, Itoga M, Inagaki T, Horiguchi J. Structural brain changes in schizophrenia associated with idiopathic unconjugated
                   hyperbilirubinemia (Gilbert’s syndrome): a planimetric CT study. Schizophr Res 2001;52:291-3.
               31.  Miyaoka T, Yasukawa R, Mizuno S, Sukegawa T, Inagaki T, et al. Proton magnetic resonance spectroscopy (1H-MRS) of hippocampus,
                   basal ganglia, and vermis of cerebellum in schizophrenia associated with idiopathic unconjugated hyperbilirubinemia (Gilbert’s
                   syndrome). J Psychiatr Res 2005;39:29-34.
               32.  Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and
                   antipsychotic effects. Biol Psychiatry 2011;70:663-71.
               33.  Steiner J, Mawrin C, Ziegeler A, Bielau H, Ullrich O, et al. Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired
                   cerebral lateralization. Acta Neuropathol 2006;112:305-16.
               34.  Le Pichon JB, Riordan SM, Watchko J, Shapiro SM. The neurological sequelae of neonatal hyperbilirubinemia: definitions, diagnosis and
                   treatment of the kernicterus spectrum disorders (KSDs). Curr Pediatr Rev 2017;13:199-209.
               35.  Dalman C, Cullberg J. Neonatal hyperbilirubinaemia--a vulnerability factor for mental disorder? Acta Psychiatr Scand 1999;100:469-71.
               36.  Chowdhury JR, Kondapalli R, Chowdhury NR. Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci
                   Comp Med 1993;37:149-73.
               37.  Gazzin S, Zelenka J, Zdrahalova L, Konickova R, Zabetta CC, et al. Bilirubin accumulation and Cyp mRNA expression in selected brain
                   regions of jaundiced Gunn rat pups. Pediatr Res 2012;71:653-60.
               38.  Liaury K, Miyaoka T, Tsumori T, Furuya M, Wake R, et al. Morphological features of microglial cells in the hippocampal dentate gyrus
                   of Gunn rat: a possible schizophrenia animal model. J Neuroinflammation 2012;9:56.
               39.  Hayashida M, Miyaoka T, Tsuchie K, Yasuda H, Wake R, et al. Hyperbilirubinemia-related behavioral and neuropathological changes in
                   rats: a possible schizophrenia animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:581-8.
               40.  Pae CU, Paik IH, Lee C, Lee SJ, Kim JJ, et al. Decreased plasma antioxidants in schizophrenia. Neuropsychobiology 2004;50:54-6.
               41.  Yin XL, Jia QF, Zhang GY, Zhang JP, Shirao T, et al. Association between decreased serum TBIL concentration and immediate memory
                   impairment in schizophrenia patients. Sci Rep 2019;9:1622.
               42.  Vítek L, Novotná M, Lenícek M, Novotný L, Eberová J, et al. Serum bilirubin levels and UGT1A1 promoter variations in patients with
                   schizophrenia. Psychiatry Res 2010;178:449-50.
               43.  Duan J, Göring HHH, Sanders AR, Moy W, Freda J, et al.; MGS. Transcriptomic signatures of schizophrenia revealed by dopamine
                   perturbation in an ex vivo model. Transl Psychiatry 2018;8:158.
   31   32   33   34   35   36   37   38   39   40   41