Page 21 - Read Online
P. 21
Tanaka. Neuroimmunol Neuroinflammation 2020;7:73-91 I http://dx.doi.org/10.20517/2347-8659.2020.04 Page 89
34. Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology
2016;36:39-49.
35. Kanamoto T, Mizuhashi K, Terada K, Minami T, Yoshikawa H, et al. Isolation and characterization of a novel plasma membrane
protein, osteoblast induction factor (obif), associated with osteoblast differentiation. BMC Dev Biol 2009;9:70.
36. Konishi H, Kobayashi M, Kunisawa T, Imai K, Sayo A, et al. Siglec-H is a microglia-specific marker that discriminates microglia
from CNS-associated macrophages and CNS-infiltrating monocytes. Glia 2017;65:1927-43.
37. Siew JJ, Chern Y. Microglial lectins in health and neurological diseases. Front Mol Neurosci 2018;11:158.
38. Kumar MAS, Peluso M, Chaudhary P, Dhawan J, Beheshti A, et al. Fractionated radiation exposure of rat spinal cords leads to latent
neuro-inflammation in brain, cognitive deficits, and alterations in apurinic endonuclease. PLoS One 2015;10:e0133016.
39. Choudhury ME, Miyanishi K, Takeda H, Islam A, Matsuoka N, et al. Phagocytic elimination of synapses by microglia during sleep.
Glia 2020;68:44-59.
40. Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J. Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia
2004;45:96-104.
41. Umakoshi K, Choudhury ME, Nishioka R, Matsumoto H, Abe N, et al. B lymphocytopenia and Bregs in a not-to-die murine sepsis
model. Biochem Biophys Res Commun 2020;523:202-7.
42. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord 2008;23:474-83.
43. Higaki H, Choudhury ME, Kawamoto C, Miyamoto K, Islam A, et al. The hypnotic bromovalerylurea ameliorates
6-hydroxydopamine-induced dopaminergic neuron loss while suppressing expression of interferon regulatory factors by microglia.
Neurochem Int 2016;99:158-68.
44. Choudhury ME, Sugimoto K, Kubo M, Nagai M, Nomoto M, et al. A cytokine mixture of GM-CSF and IL-3 that induces a
neuroprotective phenotype of microglia leading to amelioration of (6-OHDA)-induced Parkinsonism of rats. Brain Behav 2011;1:26-43.
45. Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia 1993;7:111-8.
46. Takeuchi H, Jin S, Suzuki H, Doi Y, Liang J, et al. Blockade of microglial glutamate release protects against ischemic brain injury.
Exp Neurol 2008;214:144-6.
47. Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, et al. Microglia may compensate for dopaminergic neuron loss in
experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia 2017;65:1833-47.
48. Miyanishi K, Choudhury ME, Watanabe M, Kubo M, Nomoto M, et al. Behavioral tests predicting striatal dopamine level in a rat
hemi-Parkinson’s disease model. Neurochem Int 2019;122:38-46.
49. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019;332:16-30.
50. Bezard E, Gross CE, Brotchie JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci
2003;26:215-21.
51. Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybylkowski A, et al. Dexamethasone protects against dopaminergic
neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 2004;4:1307-18.
52. Castano A, Herrera AJ, Cano J, Machado A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic
system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 2002;81:150-7.
53. Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, et al. Nonsteroidal antiinflammatory drug use and the risk for
Parkinson’s disease. Ann Neurol 2005;58:963-7.
54. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in
idiopathic Parkinson’s disease. Neurobiol Dis 2006;21:404-12.
55. Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 2010;74:995-1002.
56. Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1beta and tumor necrosis factor-alpha: reliable targets for protective therapies
in Parkinson’s Disease? Front Cell Neurosci 2013;7:53.
57. Moran LB, Graeber MB. The facial nerve axotomy model. Brain Res Brain Res Rev 2004;44:154-78.
58. Sudo S, Tanaka J, Toku K, Desaki J, Matsuda S, et al. Neurons induce the activation of microglial cells in vitro. Exp Neurol
1998;154:499-510.
59. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 2013;77:10-8.
60. Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133-9.
61. Nakata T, Kawachi K, Nagashima M, Yasugi T, Izutani H, et al. Transient ischemia-induced paresis and complete paraplegia displayed
distinct reactions of microglia and macrophages. Brain Res 2011;1420:114-24.
62. Tsuda M, Beggs S, Salter MW, Inoue K. Microglia and intractable chronic pain. Glia 2013;61:55-61.
63. Nishihara T, Tanaka J, Sekiya K, Nishikawa Y, Abe N, et al. Chronic constriction injury of the sciatic nerve in rats causes different
activation modes of microglia between the anterior and posterior horns of the spinal cord. Neurochem Int 2020;134:104672.
64. Sekiya K, Nishihara T, Abe N, Konishi A, Nandate H, et al. Carbon monoxide poisoning-induced delayed encephalopathy
accompanies decreased microglial cell numbers: Distinctive pathophysiological features from hypoxemia-induced brain damage.
Brain Res 2019;1710:22-32.
65. Claus HL, Walberer M, Simard ML, Emig B, Muesken SM, et al. NG2 and NG2-positive cells delineate focal cerebral infarct
demarcation in rats. Neuropathology 2013;33:30-8.
66. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci 2014;15:209-16.
67. Neher JJ, Emmrich JV, Fricker M, Mander PK, Thery C, et al. Phagocytosis executes delayed neuronal death after focal brain
ischemia. Proc Natl Acad Sci U S A 2013;110:E4098-107.