Page 22 - Read Online
P. 22

Page 90                          Tanaka. Neuroimmunol Neuroinflammation 2020;7:73-91 I  http://dx.doi.org/10.20517/2347-8659.2020.04

               68.  Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, et al. Microglia protect against brain injury and their selective elimination
                   dysregulates neuronal network activity after stroke. Nat Commun 2016;7:11499.
               69.  Jin WN, Shi SX, Li Z, Li M, Wood K, et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb
                   Blood Flow Metab 2017;37:2224-36.
               70.  Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed
                   neuroinflammation in the postischemic brain. J Neurosci 2006;26:6413-21.
               71.  Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, et al. Peroxiredoxin family proteins are key initiators of post-ischemic
                   inflammation in the brain. Nat Med 2012;18:911-7.
               72.  Islam A, Choudhury ME, Kigami Y, Utsunomiya R, Matsumoto S, et al. Sustained anti-inflammatory effects of TGF-beta1 on
                   microglia/macrophages. Biochim Biophys Acta 2018;1864:721-34.
               73.  Ishii Y, Yamaizumi A, Kawakami A, Islam A, Choudhury ME, et al. Anti-inflammatory effects of noradrenaline on LPS-treated
                   microglial cells: suppression of NFkappaB nuclear translocation and subsequent STAT1 phosphorylation. Neurochem Int 2015;90:56-66.
               74.  Yokoyama A, Sakamoto A, Kameda K, Imai Y, Tanaka J. NG2 proteoglycan-expressing microglia as multipotent neural progenitors in
                   normal and pathologic brains. Glia 2006;53:754-68.
               75.  Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am
                   Small Anim Pract 2008;38:137-55.
               76.  Sinz EH, Kochanek PM, Dixon CE, Clark RS, Carcillo JA, et al. Inducible nitric oxide synthase is an endogenous neuroprotectant
                   after traumatic brain injury in rats and mice. J Clin Invest 1999;104:647-56.
               77.  Hall ED, Wang JA, Miller DM. Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the
                   first week after experimental traumatic brain injury. Exp Neurol 2012;238:176-82.
               78.  Toku K, Tanaka J, Yano H, Desaki J, Zhang B, et al. Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J
                   Neurosci Res 1998;53:415-25.
               79.  Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, et al. Astrocytes prevent neuronal death induced by reactive oxygen and
                   nitrogen species. Glia 1999;28:85-96.
               80.  Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Takahashi H, et al. Expression of CD200 by macrophage-like cells in ischemic core
                   of rat brain after transient middle cerebral artery occlusion. Neurosci Lett 2007;418:44-8.
               81.  Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia-blood vessel interactions: a double-edged sword in
                   brain pathologies. Acta Neuropathol 2016;131:347-63.
               82.  Jiang Z, Jiang JX, Zhang GX. Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett
                   2014;160:17-22.
               83.  Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol
                   Pharmacol 2013;5:73-90.
               84.  Xu H, Wang Z, Li J, Wu H, Peng Y, et al. The polarization states of microglia in TBI: a new paradigm for pharmacological
                   intervention. Neural Plast 2017;2017:5405104.
               85.  Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, et al. Glucocorticoid- and mineralocorticoid receptors in microglial cells: the
                   two receptors mediate differential effects of corticosteroids. Glia 1997;20:23-37.
               86.  Kvarta MD, Bradbrook KE, Dantrassy HM, Bailey AM, Thompson SM. Corticosterone mediates the synaptic and behavioral effects
                   of chronic stress at rat hippocampal temporoammonic synapses. J Neurophysiol 2015;114:1713-24.
               87.  Smith MA. Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors. Behav Brain Res 1996;78:25-36.
               88.  Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, et al. Effects of norepinephrine on rat cultured microglial cells that express alpha1,
                   alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 2002;43:1026-34.
               89.  Zhang B, Yang L, Konishi Y, Maeda N, Sakanaka M, et al. Suppressive effects of phosphodiesterase type IV inhibitors on rat cultured
                   microglial cells: comparison with other types of cAMP-elevating agents. Neuropharmacology 2002;42:262-9.
               90.  Fujita H, Tanaka J, Maeda N, Sakanaka M. Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic
                   receptor. Neurosci Lett 1998;242:37-40.
               91.  Qian L, Wu HM, Chen SH, Zhang D, Ali SF, et al. beta2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by
                   inhibiting microglia via a novel signaling pathway. J Immunol 2011;186:4443-54.
               92.  Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, et al. Locus ceruleus controls Alzheimer’s disease
                   pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 2010;107:6058-63.
               93.  Sugama S, Takenouchi T, Hashimoto M, Ohata H, Takenaka Y, et al. Stress-induced microglial activation occurs through beta-
                   adrenergic receptor: noradrenaline as a key neurotransmitter in microglial activation. J Neuroinflammation 2019;16:266.
               94.  Dhandapani KM, Brann DW. Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys
                   2003;39:13-22.
               95.  Eeckhout Avd. Studien über die hypnotische Wirkung in der Vaïerian-süuregruppe. Arc Exp Path Pharmak 1907;57:338-57.
               96.  Kawasaki S, Abe N, Ohtake F, Islam A, Choudhury ME, et al. Effects of hypnotic bromovalerylurea on microglial BV2 cells. J
                   Pharmacol Sci 2017;134:116-23.
               97.  Kikuchi S, Nishihara T, Kawasaki S, Abe N, Kuwabara J, et al. The ameliorative effects of a hypnotic bromvalerylurea in sepsis.
                   Biochem Biophys Res Commun 2015;459:319-26.
               98.  Tanaka T, Murakami K, Bando Y, Yoshida S. Interferon regulatory factor 7 participates in the M1-like microglial polarization switch.
                   Glia 2015;63:595-610.
   17   18   19   20   21   22   23   24   25   26   27