Page 15 - Read Online
P. 15

Fracaro et al. Neuroimmunol Neuroinflammation 2020;7:1-12  I  http://dx.doi.org/10.20517/2347-8659.2019.009                Page 11

                   perspective for nervous system repair? Curr Stem Cell Res Ther 2011;6:82-92.
               36.  Menezes K, Nascimento MA, Goncalves JP, Cruz AS, Lopes DV, et al. Human mesenchymal cells from adipose tissue deposit laminin
                   and promote regeneration of injured spinal cord in rats. PLoS One 2014;9:e96020.
               37.  Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, et al. Mesenchymal stem cells for spinal cord injury: current options,
                   limitations, and future of cell therapy. Int J Mol Sci 2019;20.
               38.  Paradisi M, Alviano F, Pirondi S, Lanzoni G, Fernandez M, et al. Human mesenchymal stem cells produce bioactive neurotrophic
                   factors: source, individual variability and differentiation issues. Int J Immunopathol Pharmacol 2014;27:391-402.
               39.  Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, et al. Recent therapeutic strategies for spinal cord injury treatment: possible
                   role of stem cells. Neurosurg Rev 2012;35:293-311.
               40.  Martín-Martín Y, Fernández-García L, Sanchez-Rebato MH, Marí-Buyé N, Rojo FJ, et al. Evaluation of neurosecretome from
                   mesenchymal stem cells encapsulated in silk fibroin hydrogels. Sci Rep 2019;9:8801.
               41.  Bouhy D, Malgrange B, Multon S, Poirrier AL, Scholtes F, et al. Delayed GM-CSF treatment stimulates axonal regeneration and
                   functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J 2006;20:1239-41.
               42.  Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, et al. Mesenchymal stem cell graft improves recovery after spinal cord
                   injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012;7:e39500.
               43.  Milczarek O, Jarocha D, Starowicz-Filip A, Kwiatkowski S, Badyra B, et al. Multiple autologous bone marrow-derived CD271(+)
                   mesenchymal stem cell transplantation overcomes drug-resistant epilepsy in children. Stem Cells Transl Med 2018;7:20-33.
               44.  Fu Q, Liu Y, Liu X, Zhang Q, Chen L, et al. Engrafted peripheral blood-derived mesenchymal stem cells promote locomotive recovery
                   in adult rats after spinal cord injury. Am J Transl Res 2017;9:3950-66.
               45.  Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord
                   injury: in vivo longitudinal assessment. J Neurotrauma 2011;28:565-78.
               46.  de Almeida FM, Marques SA, Ramalho Bdos S, Massoto TB, Martinez AM. Chronic spinal cord lesions respond positively to
                   tranplants of mesenchymal stem cells. Restor Neurol Neurosci 2015;33:43-55.
               47.  Chudickova M, Vackova I, Machova Urdzikova L, Jancova P, Kekulova K, et al. The effect of wharton jelly-derived mesenchymal
                   stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int J Mol Sci 2019;20.
               48.  Hakim R, Covacu R, Zachariadis V, Frostell A, Sankavaram SR, et al. Mesenchymal stem cells transplanted into spinal cord injury
                   adopt immune cell-like characteristics. Stem Cell Res Ther 2019;10:115.
               49.  Lee KH, Suh-Kim H, Choi JS, Jeun SS, Kim EJ, et al. Human mesenchymal stem cell transplantation promotes functional recovery
                   following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars) 2007;67:13-22.
               50.  Chen YB, Jia QZ, Li DJ, Sun JH, Xi S, et al. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell
                   transplantation. Int J Clin Exp Med 2015;8:9348-54.
               51.  Cui B, Li E, Yang B, Wang B. Human umbilical cord blood-derived mesenchymal stem cell transplantation for the treatment of spinal
                   cord injury. Exp Ther Med 2014;7:1233-6.
               52.  Gao S, Guo X, Zhao S, Jin Y, Zhou F, et al. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for
                   cell replacement therapy of spinal cord injury. Cell Death Dis 2019;10:597.
               53.  Melo FR, Bressan RB, Forner S, Martini AC, Rode M, et al. Transplantation of human skin-derived mesenchymal stromal cells
                   improves locomotor recovery after spinal cord injury in rats. Cell Mol Neurobiol 2017;37:941-7.
               54.  Ma K, Fox L, Shi G, Shen J, Liu Q, et al. Generation of neural stem cell-like cells from bone marrow-derived human mesenchymal
                   stem cells. Neurol Res 2011;33:1083-93.
               55.  Blecker D, Elashry MI, Heimann M, Wenisch S, Arnhold S. New insights into the neural differentiation potential of canine adipose
                   tissue-derived mesenchymal stem cells. Anat Histol Embryol 2017;46:304-15.
               56.  Thuret S, Moon LDF, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7:628.
               57.  Frolov AA, Bryukhovetskiy AS. Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal
                   cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplant 2012;21:49-55.
               58.  Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, et al. An approach to personalized cell therapy in chronic complete paraplegia:
                   The Puerta de Hierro phase I/II clinical trial. Cytotherapy 2016;18:1025-36.
               59.  Hur JW, Cho TH, Park DH, Lee JB, Park JY, et al. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells
                   for treating spinal cord injury: a human trial. J Spinal Cord Med 2016;39:655-64.
               60.  Chung HJ, Chung WH, Lee JH, Chung DJ, Yang WJ, et al. Expression of neurotrophic factors in injured spinal cord after
                   transplantation of human-umbilical cord blood stem cells in rats. J Vet Sci 2016;17:97-102.
               61.  Yang C, Li X, Sun L, Guo W, Tian W. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J
                   Neural Eng 2017;14:026005.
               62.  ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), National Institutes of Health; 2000 - [cited 2019
                   Aug 25]. Available from https://clinicaltrials.gov/ct2/home [Last accessed on 20 Jan 2020]
               63.  Cristante AF, Barros-Filho TE, Tatsui N, Mendrone A, Caldas JG, et al. Stem cells in the treatment of chronic spinal cord injury:
                   evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009;47:733-8.
               64.  Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, et al. Complete spinal cord injury treatment using autologous bone marrow cell
                   transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem
                   Cells 2007;25:2066-73.
               65.  Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal
                   stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009;11:897-911.
               66.  Sharma A, Gokulchandran N, Chopra G, Kulkarni P, Lohia M, et al. Administration of autologous bone marrow-derived mononuclear
                   cells in children with incurable neurological disorders and injury is safe and improves their quality of life. Cell Transplant 2012;21
   10   11   12   13   14   15   16   17   18   19   20