Page 133 - Read Online
P. 133

Page 12 of 13             Souza et al. Neuroimmunol Neuroinflammation 2019;6:12  I  http://dx.doi.org/10.20517/2347-8659.2019.04

               17.   Nascimento de Souza R, Silva FK, Alves de Medeiros M. Bee venom acupuncture reduces interleukin-6, increases interleukin-10, and
                   induces locomotor recovery in a model of spinal cord compression. J Acupunct Meridian Stud 2017;10:204-10.
               18.   DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem 2016;139 Suppl 2:136-53.
               19.   Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars)
                   2011;71:281-99.
               20.   Esposito E, Cuzzocrea S. Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 2011;32:107-15.
               21.   Ulndreaj A, Chio JC, Ahuja CS, Fehlings MG. Modulating the immune response in spinal cord injury. Expert Rev Neurother
                   2016;16:1127-9.
               22.   Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J
                   Neuroinflammation 2014;11:98.
               23.   Chen J, Wu Y, Duan FX, Wang SN, Guo XY, et al. Effect of M2 macrophage adoptive transfer on transcriptome profile of injured
                   spinal cords in rats. Exp Biol Med (Maywood) 2019;244:880-92.
               24.   Ma SF, Chen YJ, Zhang JX, Shen L, Wang R, et al. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats
                   after spinal cord injury. Brain Behav Immun 2015;45:157-70.
               25.   Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015;1619:1-11.
               26.   Ren Y, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast
                   2013;2013:945034.
               27.   Zhang Y, Liu Z, Zhang W, Wu Q, Zhang Y, et al. Melatonin improves functional recovery in female rats after acute spinal cord injury
                   by modulating polarization of spinal microglial/macrophages. J Neurosci Res 2019;97:733-43.
               28.   Zhou Y, Li N, Zhu L, Lin Y, Cheng H. The microglial activation profile and associated factors after experimental spinal cord injury in
                   rats. Neuropsychiatr Dis Treat 2018;14:2401-13.
               29.   Vanický I, Urdzíková L, Saganová K, Čízková D, Gálik J. A simple and reproducible model of spinal cord injury induced by epidural
                   balloon inflation in the rat. J Neurotrauma 2001;18:1399-407.
               30.   Yin CS, Jeong HS, Park HJ, Baik Y, Yoon MH, et al. A proposed transpositional acupoint system in a mouse and rat model. Res Vet
                   Sci 2008;84:159-65.
               31.   Basso D, Beattle M, Bresnahan J. Sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995;12:1-21.
               32.   Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K. Efficient testing of motor function in spinal cord injured rats. Brain Res
                   2000;883:165-77.
               33.   Pajoohesh-Ganji A, Byrnes KR, Fatemi G, Faden AI. A combined scoring method to assess behavioral recovery after mouse spinal
                   cord injury. Neurosci Res 2010;67:117-25.
               34.   Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. Microglial/Macrophage polarization dynamics following traumatic
                   brain injury. J Neurotrauma 2016;33:1732-50.
               35.   Daltaban IS, Misir S, Turksoy VA, Ak H, Cakir E. The effects of barnidipine on an experimental ischemia reperfusion model of spinal
                   cord injury and comparison with methyl prednisolone. North Clin Istanb 2018;6:103-9.
               36.   Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury.
                   Spine J 2004;4:451-64.
               37.   Hausmann ON. Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003;41:369-78.
               38.   Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation:
                   systematic review of animal experiments. J Neuroinflammation 2015;12:114.
               39.   Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics 2010;7:366-77.
               40.   Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm
                   Des 2005;11:1223-36.
               41.   Shechter R, London A, Varol C, Raposo C, Cusimano M, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-
                   inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009;6:e1000113.
               42.   Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci 2012;33:304-11.
               43.   Wang ZH, Xie YX, Zhang JW, Qiu XH, Cheng AB, et al. Carnosol protects against spinal cord injury through Nrf-2 upregulation. J
                   Recept Signal Transduct Res 2016;36:72-8.
               44.   Ji LL, Guo MW, Ren XJ, Ge DY, Li GM, et al. Effects of electroacupuncture intervention on expression of cyclooxygenase 2 and
                   microglia in spinal cord in rat model of neuropathic pain. Chin J Integr Med 2017;23:786-92.
               45.   Liu J, Wu Y. Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting bax and inhibits sodium channel
                   Nav1.3 expression in rats after spinal cord injury. Biomed Pharmacother 2017;89:1125-35.
               46.   Liu C, Shi Z, Fan L, Zhang C, Wang K, et al. Resveratrol improves neuron protection and functional recovery in rat model of spinal
                   cord injury. Brain Res 2011;1374:100-9.
               47.   Genovese T, Esposito E, Mazzon E, Muià C, Di Paola R, et al. Evidence for the role of mitogen-activated protein kinase signaling
                   pathways in the development of spinal cord injury. J Pharmacol Exp Ther 2008;325:100-14.
               48.   Wu B, Liang J. Pectolinarigenin promotes functional recovery and inhibits apoptosis in rats following spinal cord injuries. Exp Ther
                   Med 2019;17:3877-82.
               49.   Luo Y, Fu C, Wang Z, Zhang Z, Wang H, et al. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of
                   oxidative stress, inflammation and the Bcl2 and Bax pathway. Mol Med Rep 2015;12:7132-8.
               50.   Khalil WK, Assaf N, ElShebiney SA, Salem NA. Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced
   128   129   130   131   132   133   134   135   136   137   138