Page 121 - Read Online
P. 121

Almurshidi et al. Neuroimmunol Neuroinflammation 2019;6:11  I  http://dx.doi.org/10.20517/2347-8659.2019.19       Page 11 of 11

                   injury in adult zebrafish. Eur J Neurosci 2011;33:1587-97.
               52.  Strickland ER, Woller SA, Garraway SM, Hook MA, Grau JW, et al. Regulatory effects of intermittent noxious stimulation on spinal
                   cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion. Front Neural Circuits 2014;8:117.
               53.  Strickland ER, Woller SA, Hook MA, Grau JW, Miranda RC. The association between spinal cord trauma-sensitive miRNAs and pain
                   sensitivity, and their regulation by morphine. Neurochem Int 2014;77:40-9.
               54.  Zhao Y, Zhang H, Zhang D, Yu CY, Zhao XH, et al. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with
                   spinal cord injury. Neural Regen Res 2015;10:1147-52.
               55.  von Schack D, Agostino MJ, Murray BS, Li Y, Reddy PS, et al. Dynamic changes in the microRNA expression profile reveal multiple
                   regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One 2011;6:e17670.
               56.  Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, et al. microRNA dysregulation following spinal cord contusion:
                   implications for neural plasticity and repair. Neuroscience 2011;186:146-60.
               57.  Andersen HH, Duroux M, Gazerani P. microRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions.
                   Neurobiol Dis 2014;71:159-68.
               58.  Banks SA, Pierce ML, Soukup GA. Sensational microRNAs: neurosensory roles of the microRNA-183 family. Mol Neurobiol. 2019;
                   doi: 10.1007/s12035-019-01717-3.
               59.   Pinchi E, Frati A, Cantatore S, D’Errico S, Russa R, et al. Acute spinal cord injury: a systematic review investigating miRNA families
                   involved. Int J Mol Sci 2019 13;20:1841.
               60.  Huang Y, Zhu N, Chen T, Chen W, Kong J, et al. Triptolide suppressed the microglia activation to improve spinal cord injury through
                   miR-96/IKKβ/NF-κB pathway. Spine (Phila Pa 1976) 2019;44:E707-14.
               61.  Kinoshita C, Aoyama K, Matsumura N, Kikuchi-Utsumi K, Watabe M, et al. Rhythmic oscillations of the microRNA miR-96-5p play
                   a neuroprotective role by indirectly regulating glutathione levels. Nat Commun 2014;5:3823.
               62.  Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: a key role for
                   miRNAs. Free Radic Biol Med 2018;119:17-33.
               63.  Guo Y, Liu H, Zhang H, Shang C, Song Y. miR-96 regulates FOXO1-mediated cell apoptosis in bladder cancer. Oncol Lett 2012;4:561-5.
               64.  Iwai N, Yasui K, Tomie A, Gen Y, Terasaki K, et al. Oncogenic miR-96-5p inhibits apoptosis by targeting the caspase-9 gene in
                   hepatocellular carcinoma. Int J Oncol 2018;53:237-45.
               65.  Ress AL, Stiegelbauer V, Winter E, Schwarzenbacher D, Kiesslich T, et al. miR-96-5p influences cellular growth and is associated
                   with poor survival in colorectal cancer patients. Mol Carcinog 2015;54:1442-50.
               66.  Hong Y, Liang H, Uzair-Ur-Rehman, Wang Y, Zhang W, et al. miR-96 promotes cell proliferation, migration and invasion by targeting
                   PTPN9 in breast cancer. Sci Rep 2016;6:37421.
               67.  Chen RX, Xia YH, Xue TC, Ye SL. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells.
                   Mol Med Rep 2012;5:800-4.
               68.  Xu D, He X, Chang Y, Xu C, Jiang X, et al. Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2
                   hepatoma cells. Oncol Rep 2013;29:653-61.
               69.  Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, et al. Upregulation of miR-96 enhances cellular proliferation of prostate
                   cancer cells through FOXO1. PLoS One 2013;8:e72400.
               70.  Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell
                   2010;18:11-22.
               71.  Zhang S, Huan W, Wei H, Shi J, Fan J, et al. FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J
                   Cell Biochem 2013;114:354-65.
               72.  Wang Y, Liu Y, Chen Y, Shi S, Qin J, et al. Peripheral nerve injury induces down-regulation of FOXO3a and p27kip1 in rat dorsal root
                   ganglia. Neurochem Res 2009;34:891-8.
               73.  Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, et al. miR-96 is required for normal development of the auditory hindbrain.
                   Hum Mol Genet 2018;27:860-74.
               74.  Huang H, Tindall DJ. FOXO factors: a matter of life and death. Future Oncol 2006;2:83-9.
               75.  Maiese K. FOXO proteins in the nervous system. Anal Cell Pathol (Amst) 2015;2015:569392.
               76.  Lin H, Dai T, Xiong H, Zhao X, Chen X, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by
                   downregulating transcriptional factor FOXO3a. PLoS One 2010;5:e15797.
               77.  Song HM, Luo Y, Li DF, Wei CK, Hua KY, et al. microRNA-96 plays an oncogenic role by targeting FOXO1 and regulating AKT/
                   FOXO1/Bim pathway in papillary thyroid carcinoma cells. Int J Clin Exp Pathol 2015;8:9889-900.
               78.  Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J
                   Oncol 2006;29:643-8.
               79.  Marfè G, Tafani M, Fiorito F, Pagnini U, Iovane G, et al. Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin
                   proteins family in canine coronavirus type II-induced apoptosis. PLoS One 2011;6:e27313.
               80.  Gao F, Wang W. microRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear
                   protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Mol Med Rep 2015;11:1200-6.
   116   117   118   119   120   121   122   123   124   125   126