Page 120 - Read Online
P. 120

Page 10 of 11        Almurshidi et al. Neuroimmunol Neuroinflammation 2019;6:11  I  http://dx.doi.org/10.20517/2347-8659.2019.19

               20.  Ning B,Gao L, Liu RH, Liu Y, Zhang NS, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J
                   Biol Sci 2014;10:997-1006.
               21.  Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, et al. Estrogen receptor agonists for attenuation of
                   neuroinflammation and neurodegeneration. Brain Res Bull 2014;109:22-31.
               22.  Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, et al. Molecular mechanisms of estrogen for neuroprotection in spinal
                   cord injury and traumatic brain injury. Rev Neurosci 2016;27:271-81.
               23.  Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. microRNAs, macrocontrol: regulation of miRNA processing. RNA
                   2010;16:1087-95.
               24.  Madathil SK, Nelson PT, Saatman KE, Wilfred BR. MicroRNAs in CNS injury: potential roles and therapeutic implications.
                   Bioessays 2011;33:21-6.
               25.  Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, et al. MicroRNA dysregulation in spinal cord injury: causes,
                   consequences and therapeutics. Front Cell Neurosci 2014;8:53.
               26.  Yang L, Ge D, Chen X, Jiang C, Zheng S. miRNA-544a Regulates the Inflammation of Spinal Cord Injury by Inhibiting the
                   Expression of NEUROD4. Cell Physiol Biochem 2018;51:1921-31.
               27.  Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci
                   Res 2018;126:39-43.
               28.  Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, et al. Brain regulatory T cells suppress astrogliosis and potentiate
                   neurological recovery. Nature 2019;565:246-50.
               29.  Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol
                   2012;46:251-64.
               30.  Pogue AI, Cui JG, Li YY, Zhao Y, Culicchia F, et al. microRNA-125b (miRNA-125b) function in astrogliosis and glial cell
                   proliferation. Neurosci Lett 2010;476:18-22.
               31.  Pogue AI, Percy ME, Cui JG, Li YY, Bhattacharjee S, et al. Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in
                   metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 2011;105:1434-7.
               32.  Wang CY, Yang SH, Tzeng SF. microRNA-145 as one negative regulator of astrogliosis. Glia 2015;63:194-205.
               33.  Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J
                   Neurosci 2012;32:17935-47.
               34.  Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, et al. The role of microRNA markers in the diagnosis, treatment,
                   and outcome prediction of spinal cord injury. Front Surg 2016;3:56.
               35.  Sahni V, Mukhopadhyay A, Tysseling V, Hebert A, Birch D, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis
                   after spinal cord injury. J Neurosci 2010;30:1839-55.
               36.  North HA, Pan L, McGuire TL, Brooker S, Kessler JA. β1-Integrin alters ependymal stem cell BMP receptor localization and
                   attenuates astrogliosis after spinal cord injury. J Neurosci 2015;35:3725-33.
               37.  Shi Y, Zhao Y, Shao N, Ye R, Lin Y, et al. Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the
                   proliferation, migration and invasiveness of human breast cancer cells. Oncol Lett 2017;13:4402-12.
               38.  Wang Z, Yao W, Li K, Zheng N, Zheng C, et al. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via
                   PTEN/PDCD4. Oncol Lett 2017;13:4727-33.
               39.  Chakrabarti M, Banik NL, Ray SK. miR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1
                   motoneurons. Neuroscience 2014;256:322-33.
               40.  Chakrabarti M, Ray SK. Experimental procedures for demonstration of microRNA mediated enhancement of functional
                   neuroprotective effects of estrogen receptor agonists. Methods Mol Biol 2016;1366:359-72.
               41.  Liu G, Detloff MR, Miller KN, Santi L, Houlé JD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after
                   spinal cord injury. Exp Neurol 2012;233:447-56.
               42.  Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. Exp Neurol 2010;223:45-50.
               43.  Sun F, Park KK, Belin S, Wang D, Lu T, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature
                   2011;480:372-5.
               44.  Han JM, Sahin M. TSC1/TSC2 signaling in the CNS. FEBS Lett 2011;585:973-80.
               45.  Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, et al. Melatonin attenuates calpain upregulation, axonal damage and
                   neuronal death in spinal cord injury in rats. J Pineal Res 2008;44:348-57.
               46.  Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, et al. Administration of microRNA-210 promotes spinal cord regeneration in
                   mice. Spine (Phila Pa 1976) 2014;39:1099-107.
               47.  Theis T, Yoo M, Park CS, Chen J, Kügler S, et al. Lentiviral delivery of miR-133b improves functional recovery after spinal cord
                   injury in mice. Mol Neurobiol 2017;54:4659-71.
               48.  Liu Y, Han N, Li Q, Li Z. Bioinformatics analysis of microRNA time-course expression in brown rat (Rattus norvegicus): spinal cord
                   injury self-repair. Spine (Phila Pa 1976) 2016;41:97-103.
               49.  Yuan S, Wang YX, Gong PH, Meng CY. miR-124 inhibits spinal neuronal apoptosis through binding to GCH1. Eur Rev Med
                   Pharmacol Sci 2019;23:4564-74.
               50.  Lu XC, Zheng JY, Tang LJ, Huang BS, Li K, et al. miR-133b Promotes neurite outgrowth by targeting RhoA expression. Cell Physiol
                   Biochem 2015;35:246-58.
               51.  Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, et al. microRNA miR-133b is essential for functional recovery after spinal cord
   115   116   117   118   119   120   121   122   123   124   125