Page 119 - Read Online
P. 119

Almurshidi et al. Neuroimmunol Neuroinflammation 2019;6:11  I  http://dx.doi.org/10.20517/2347-8659.2019.19         Page 9 of 11

               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               The work was supported in part by an investigator-initiated research grant (SCIRF-2015-I-01) from South
               Carolina Spinal Cord Injury Research Fund (Columbia, SC, USA), an award from the Soy Health Research
               Program (SHRP, United Soybean Board, Chesterfield, MO, USA), and earlier R01 grants (CA-091460 and
               NS-057811) from the National Institutes of Health (Bethesda, MD, USA).


               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2019.


               REFERENCES
               1.   Priebe MM, Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, et al. Spinal cord injury medicine. 6. Economic and societal
                   issues in spinal cord injury. Arch Phys Med Rehabil 2007;88:S84-8.
               2.   Merritt CH, Taylor MA, Yelton CJ, Ray SK. Economic impact of traumatic spinal cord injuries in the United States. Neuroimmunol
                   Neuroinflammation 2019;6:9.
               3.   Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci Neuroecon
                   2017;6:15-29.
               4.   Tafrihi M, Hasheminasab E. miRNAs: biology, biogenesis, their web-based tools, and databases. Microrna 2019;8:4-27.
               5.   Shi Z, Zhou H, Lu L, Li X, Fu Z, et al. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017;127:1104-15.
               6.   Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 2009;219:424-9.
               7.   Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, et al. microRNA dysregulation in the spinal cord following
                   traumatic injury. PLoS One 2012;7:e34534.
               8.   Ning S, Liu H, Gao B, Wei W, Yang A, et al. miR-155, miR-96 and miR-99a as potential diagnostic and prognostic tools for the clinical
                   management of hepatocellular carcinoma. Oncol Lett 2019;18:3381-7.
               9.   Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P, et al. A common microRNA signature in mouse models of retinal
                   degeneration. Exp Eye Res 2008;87:529-34.
               10.  Li R, Bao L, Hu W, Liang H, Dang X. Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects
                   on a rat model of acute spinal cord injury. Tissue Cell 2019;57:22-33.
               11.  James ND, Bartus K, Grist J, Bennett DL, McMahon SB, et al. Conduction failure following spinal cord injury: functional and
                   anatomical changes from acute to chronic stages. J Neurosci 2011;31:18543-55.
               12.  Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol
                   2014;114:25-57.
               13.  Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain
                   Res Rev 2003;42:169-85.
               14.  Hagen EM. Acute complications of spinal cord injuries. World J Orthop 2015;6:17-23.
               15.  Sezer N, Akkuş S, Uğurlu FG. Chronic complications of spinal cord injury. World J Orthop 2015;6:24-33.
               16.  Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci 2016;10:98.
               17.  Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. Inhibition of calpain-mediated apoptosis by E-64-d reduced immediate
                   early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res
                   2001;916:115-26.
               18.  Faden AI, Wu J, Stoica BA, Loane DJ. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord
                   injury. Br J Pharmacol 2016;173:681-91.
               19.  Ray SK, Samantaray S, Smith JA, Matzelle DD, Das A, et al. Inhibition of cysteine proteases in acute and chronic spinal cord injury.
                   Neurotherapeutics 2011;8:180-6.
   114   115   116   117   118   119   120   121   122   123   124