Page 280 - Read Online
P. 280

Page 12 of 13    Dello Russo et al. Neuroimmunol Neuroinflammation 2018;5:36  I  http://dx.doi.org/10.20517/2347-8659.2018.42


                   macrophages/microglia. Neuro Oncol 2010;12:1113-25.
               50.  Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013;73:919-34.
               51.  Mihu MR, Pattabhi R, Nosanchuk JD. The impact of antifungals on toll-like receptors. Front Microbiol 2014;5:99.
               52.  Sarkar S, Yong VW. The battle for the brain: brain tumor-initiating cells vs. microglia/macrophages. Oncoimmunology 2014;3:e28047.
               53.  Yang R, Sarkar S, Korchinski DJ, Wu Y, Yong VW, Dunn JF. MRI monitoring of monocytes to detect immune stimulating treatment
                   response in brain tumor. Neuro Oncol 2017;19:364-71.
               54.  Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017;168:960-76.
               55.  Ryskalin L, Limanaqi F, Biagioni F, Frati A, Esposito V, Calierno MT, Lenzi P, Fornai F. The emerging role of m-TOR up-regulation in
                   brain Astrocytoma. Histol Histopathol 2017;32:413-31.
               56.  Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol
                   Sci 2015;36:124-35.
               57.  Lin F, Buil L, Sherris D, Beijnen JH, van Tellingen O. Dual mTORC1 and mTORC2 inhibitor Palomid 529 penetrates the blood-brain
                   barrier without restriction by ABCB1 and ABCG2. Int J Cancer 2013;133:1222-33.
               58.  Lisi L, Stigliano E, Lauriola L, Navarra P, Dello Russo C. Proinflammatory-activated glioma cells induce a switch in microglial
                   polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells. ASN Neuro
                   2014;6:171-83.
               59.  Laudati E, Currò D, Navarra P, Lisi L. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigm.
                   Neurochem Int 2017;108:100-8.
               60.  Grimaldi A, D’Alessandro G, Golia MT, Grössinger EM, Di Angelantonio S, Ragozzino D, Santoro A, Esposito V, Wulff H, Catalano M,
                   Limatola C. KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages. Cell Death Dis 2016;7:e2174.
               61.  Chiu TL, Peng CW, Wang MJ. Enhanced anti-glioblastoma activity of microglia by AAV2-mediated IL-12 through TRAIL and phago-
                   cytosis in vitro. Oncol Rep 2011;25:1373-80.
               62.  Chiu TL, Wang MJ, Su CC. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-
                   mediated IL-12 in a syngeneic rat model. J Biomed Sci 2012;19:45.
               63.  Xu S, Wei J, Wang F, Kong LY, Ling XY, Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, Fajt V, Levine JM, Qiao W, Li
                   XG, Lang FF, Rao G, Fuller GN, Calin GA, Heimberger AB. Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy
                   against murine glioblastoma. J Natl Cancer Inst 2014;106:pii: dju162.
               64.  Mercurio L, Ajmone-Cat MA, Cecchetti S, Ricci A, Bozzuto G, Molinari A, Manni I, Pollo B, Scala S, Carpinelli G, Minghetti L. Tar-
                   geting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma
                   model. J Exp Clin Cancer Res 2016;35:55.
               65.  Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L, Braczynski AK, Weissenberger J, Bratzke H, Reiß S, Pennartz S,
                   Winkelmann R, Senft C, Plate KH, Wischhusen J, Stenzel W, Harter PN, Mittelbronn M. MIF receptor CD74 is restricted to microglia/
                   macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol 2015;25:491-504.
               66.  Gravina GL, Mancini A, Mattei C, Vitale F, Marampon F, Colapietro A, Rossi G, Ventura L, Vetuschi A, Di Cesare E, Fox JA, Festuccia C.
                   Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models. Oncotarget
                   2017;8:29865-86.
               67.  Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, Zhang M, Jia J, Yang H, Zhang J, Li W, Jiang J, Chen X. Chlorogenic acid inhibits glioblas-
                   toma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep 2017;7:39011.
               68.  Salazar N, Carlson JC, Huang K, Zheng Y, Oderup C, Gross J, Jang AD, Burke TM, Lewén S, Scholz A, Huang S, Nease L, Kosek J,
                   Mittelbronn M, Butcher EC, Tu H, Zabel BA. A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune
                   responses and extends survival in mouse GBM models. Mol Ther 2018;26:1354-65.
               69.  Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin
                   Dev Immunol 2013;2013:914104.
               70.  Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE. Microglial stimulation of glioblastoma invasion
                   involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 2012;18:519-
                   27.
               71.  Markovic DS, Glass R, Synowitz M, Rooijen Nv, Kettenmann H. Microglia stimulate the invasiveness of glioma cells by increasing the
                   activity of metalloprotease-2. J Neuropathol Exp Neurol 2005;64:754-62.
               72.  Chou J, Chan MF, Werb Z. Metalloproteinases: a functional pathway for myeloid cells. Microbiol Spectr 2016; doi: 10.1128/microbiol-
                   spec.MCHD-0002-2015.
               73.  Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 2003;3:489-501.
               74.  Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B, Cheng SY. Up-regulation of angiopoietin-2,
                   matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma.
                   Am J Pathol 2005;166:877-90.
               75.  Hu F, Ku MC, Markovic D, a Dzaye OD, Lehnardt S, Synowitz M, Wolf SA, Kettenmann H. Glioma-associated microglial MMP9 ex-
                   pression is upregulated by TLR2 signaling and sensitive to minocycline. Int J Cancer 2014;135:2569-78.
               76.  Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H. Minocycline reduces glioma expansion and
                   invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 2011;25:624-8.
               77.  Yongjun Y, Shuyun H, Lei C, Xiangrong C, Zhilin Y, Yiquan K. Atorvastatin suppresses glioma invasion and migration by reducing mi-
                   croglial MT1-MMP expression. J Neuroimmunol 2013;260:1-8.
               78.  Jacobs VL, Landry RP, Liu Y, Romero-Sandoval EA, De Leo JA. Propentofylline decreases tumor growth in a rodent model of glioblas-
                   toma multiforme by a direct mechanism on microglia. Neuro Oncol 2012;14:119-31.
               79.  Zhao D, Alizadeh D, Zhang L, Liu W, Farrukh O, Manuel E, Diamond DJ, Badie B. Carbon nanotubes enhance CpG uptake and poten-
   275   276   277   278   279   280   281   282   283   284   285