Page 266 - Read Online
P. 266

Page 18 of 19            Mondal et al. Neuroimmunol Neuroinflammation 2018;5:34  I  http://dx.doi.org/10.20517/2347-8659.2018.13

                   T11TS-mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol
                   2008;20:1489-505.
               37.  Chaudhuri S, Singh MK, Bhattacharya D, Datta A, Hazra I, Mondal S, Faruk Sk Md O, Ronsard L, Ghosh TK, Chaudhuri S. T11TS
                   immunotherapy repairs PI3K-AKT signaling in T-cells: clues toward enhanced T-cell survival in rat glioma model. J Cell Physiol
                   2018;233:759-70.
               38.  Chaudhuri S, Bhattacharya D, Singh MK, Moitra S, Ronsard L, Ghosh TK, Chaudhuri S. Disease relevance of T11TS-induced T-cell
                   signal transduction through the CD2-mediated calcineurin-NFAT pathway: perspectives in glioma immunotherapy. Mol Immunol
                   2015;67:256-64.
               39.  Mukherjee J, Ghosh A, Ghosh A, Chaudhuri S. ENU administration causes genomic instability along with single nucleotide
                   polymorphisms in p53 during gliomagenesis: T11TS administration demonstrated in vivo apoptosis of these genetically altered tumor
                   cells. Cancer Biol Ther 2006;5:156-64.
               40.  Mukherjee J, Ghosh A, Sarkar S, Mazumdar M, Sarkar P, Duttagupta AK, Chaudhuri S. T11TS/S-LFA3 induces apoptosis of the
                   brain tumor cells: a new approach to characterise the apoptosis associated genetic changes by arbitrarily primed-PCR. Cancer Lett
                   2005;222:23-38.
               41.  Mondal S, Hazra I, Datta A, Sk Md OF, Moitra S, Tripathi SK, Chaudhuri S. T11TS repress gliomagenic apoptosis of bone marrow
                   hematopoietic stem cells. J Cell Physiol 2018;233:269-90.
               42.  Druckrey H, Ivankovic S, Gimmy J. Cancerogenic effects of methyl- and ethyl-nitrosourea (MNU and ENU) at single intracerebral and
                   intracarotidal injection in newborn and young BD-rats. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 1973;79:282-97.
               43.  Singer B, Dosanjh MK. Site-directed mutagenesis for quatitation of base base interactions at defined sites. Mutat Res 1990;233:45-51.
               44.  Branstetter DG, Stoner GD, Schut HAJ, Senitzer D, Conran PB, Goldblatt PJ. Ethylnitrosourea-induced transplacental carcinogenesis in
                   the mouse: tumor response, DNA binding, and adduct formation. Cancer Research 1987;47:348-52.
               45.  Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S. T11 target structure exerts effector function by activating immune cells in
                   CNS against glioma where cytokine modulation provide favorable microenvironment. Indian J Exp Biol 2010;48:879-88.
               46.  Chatterjee S, Dutta RK, Basak P, Das P, Das M, Pereira JA, Chaklader M, Chaudhuri S, Law S. Alteration in marrow stromal
                   microenvironment and apoptosis mechanisms involved in aplastic anemia: an animal model to study the possible disease pathology.
                   Stem Cells Int 2010;2010:932354.
               47.  Bhattacharya D, Singh MK, Chaudhuri S, Acharya S, Basu AK, Chaudhuri S. T11TS impedes glioma angiogenesis by inhibiting VEGF
                   signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol
                   2013;113:13-25.
               48.  Law S, Maiti D, Palit A, Majumder D, Basu K, Chaudhuri S, Chaudhuri S. Facilitation of functional compartmentalization of bone
                   marrow cells in leukemic mice by biological response modifiers: an immunotherapeutic approach. Immunol Lett 2001;76:145-52.
               49.  Civin CI, Banquerigo ML, Strauss LC, Loken MR. Antigenic analysis of hematopoiesis. VI. Flow cytometric characterization of My-
                   10-positive progenitor cells in normal human bone marrow. Exp Hematol 1987;15:10-7.
               50.  Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1992;1:115-29.
               51.  Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood
                   2003;101:517-23.
               52.  Sogo S, Inaba M, Ogata H, Hisha H, Adachi Y, Mori S, Toki J, Yamanishi K, Kanzaki H, Adachi M, Ikehara S. Induction of c-kit
                   molecules on human CD34+/c-kit < low cells: evidence for CD34+/c-kit < low cells as primitive hematopoietic stem cells. Stem Cells
                   1997;15:420-9.
               53.  Ema H, Takano H, Sudo K, Nakauchi H. In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000;192:1281-8.
               54.  Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and
                   megakaryocytic bias. J Exp Med 2014;211:217-31.
               55.  Yokota T, Oritani K, Butz S, Ewers S, Vestweber D, Kanakura Y. Markers for hematopoietic stem cells: histories and recent
                   achievements. In: Advances in Hematopoietic Stem Cell Research. Mexico City: InTech; 2012. p.77-88.
               56.  Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S. Immunotherapeutic effects of T11TS/S-LFA3 against
                   nitrosocompound mediated neural genotoxicity. Toxicol Lett 2004;150:239-57.
               57.  Ghosh A, Mukherjee J, Bhattacharjee M, Sarkar P, Acharya S, Chaudhuri S. T11TS/SLFA-3 differentially regulate the population of
                   microglia and brain infiltrating lymphocytes to reduce glioma by modulating intrinsic Bcl-2 expression rather than p53. Cent Nerv Syst
                   Agents Med Chem 2007;7:145-55.
               58.  Acharya S, Chatterjee S, Kumar P, Bhattacharjee M, Chaudhuri S, Chaudhuri S. Induction of G1 arrest in glioma cells by T11TS is
                   associated with upregulation of Cip1/Kip1 and concurrent downregulation of cyclin D (1 and 3). Anticancer Drugs 2010;21:53-64.
               59.  Singh MK, Bhattacharya D, Chaudhuri S, Acharya S, Kumar P, Santra P, Basu AK, Chaudhuri S. T11TS inhibits glioma angiogenesis
                   by modulation of MMPs, TIMPs, with related integrin alphav and TGF-beta1 expressions. Tumour Biol 2014;35:2231-46.
               60.  Sarkar S, Ghosh A, Mukherjee J, Chaudhuri S, Chaudhuri S. CD2-SLFA3/T11TS interaction facilitates immune activation and glioma
                   regression by apoptosis. Cancer Biol Ther 2004;3:1121-8.
               61.  Mukherjee J, Ghosh A, Sarkar P, Mazumdar M, Banerjee C, Chaudhuri S. Immunotherapy with T11TS/S-LFA-3 specifically induces
                   apoptosis of brain tumor cells by augmenting intracranial immune status. Anticancer Res 2005;25:2905-19.
               62.  Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S. T11 target structure exerts effector function by activating immune cells in
                   CNS against glioma where cytokine modulation provide favorable microenvironment. Indian J Exp Biol 2010;48:879-88.
               63.  Kumar P, Chatterjee S, Acharya S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S. Significant modulation of macrophages
   261   262   263   264   265   266   267   268   269   270   271