Page 51 - Read Online
P. 51

Page 14 of 16       Chandrasekar et al. Mini-invasive Surg 2021;5:33  https://dx.doi.org/10.20517/2574-1225.2021.12

               21.      Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD. The value of serum CA 19-9 in predicting cholangiocarcinomas in
                   patients with primary sclerosing cholangitis. Dig Dis Sci 2005;50:1734-40.  DOI  PubMed
               22.      Park HS, Lee JM, Choi JY, et al. Preoperative evaluation of bile duct cancer: MRI combined with MR cholangiopancreatography
                   versus MDCT with direct cholangiography. AJR Am J Roentgenol 2008;190:396-405.  DOI  PubMed
               23.      Park MS, Kim TK, Kim KW, et al. Differentiation of extrahepatic bile duct cholangiocarcinoma from benign stricture: findings at
                   MRCP versus ERCP. Radiology 2004;233:234-40.  DOI  PubMed
               24.      Furmanczyk PS, Grieco VS, Agoff SN. Biliary brush cytology and the detection of cholangiocarcinoma in primary sclerosing
                   cholangitis: evaluation of specific cytomorphologic features and CA19-9 levels. Am J Clin Pathol 2005;124:355-60.  DOI  PubMed
               25.      Kurzawinski TR, Deery A, Dooley JS, Dick R, Hobbs KE, Davidson BR. A prospective study of biliary cytology in 100 patients with
                   bile duct strictures. Hepatology 1993;18:1399-403.  PubMed
               26.      Burnett AS, Calvert TJ, Chokshi RJ. Sensitivity of endoscopic retrograde cholangiopancreatography standard cytology: 10-y review of
                   the literature. J Surg Res 2013;184:304-11.  DOI  PubMed
               27.      Kushnir VM, Mullady DK, Das K, et al. The diagnostic yield of malignancy comparing cytology, FISH, and molecular analysis of cell
                   free cytology brush supernatant in patients with biliary strictures undergoing endoscopic retrograde cholangiography (ERC): a
                   prospective study. J Clin Gastroenterol 2019;53:686-92.  DOI  PubMed  PMC
               28.      Dudley JC, Zheng Z, McDonald T, et al. Next-Generation Sequencing and Fluorescence in Situ Hybridization Have Comparable
                   Performance Characteristics in the Analysis of Pancreaticobiliary Brushings for Malignancy. J Mol Diagn 2016;18:124-30.  DOI
               29.      Sugimoto S, Matsubayashi H, Kimura H, et al. Diagnosis of bile duct cancer by bile cytology: usefulness of post-brushing biliary
                   lavage fluid. Endosc Int Open 2015;3:E323-8.  DOI  PubMed  PMC
               30.      Tamada  K,  Tomiyama  T,  Wada  S,  et  al.  Endoscopic  transpapillary  bile  duct  biopsy  with  the  combination  of  intraductal
                   ultrasonography in the diagnosis of biliary strictures. Gut 2002;50:326-31.  DOI  PubMed  PMC
               31.      Sugiyama M, Atomi Y, Wada N, Kuroda A, Muto T. Endoscopic transpapillary bile duct biopsy without sphincterotomy for
                   diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 1996;91:465-7.
                   PubMed
               32.      Chen  WM,  Wei  KL,  Chen  YS,  et  al.  Transpapillary  biliary  biopsy  for  malignant  biliary  strictures:  comparison  between
                   cholangiocarcinoma and pancreatic cancer. World J Surg Oncol 2016;14:140.  DOI  PubMed  PMC
               33.      Navaneethan U, Njei B, Lourdusamy V, Konjeti R, Vargo JJ, Parsi MA. Comparative effectiveness of biliary brush cytology and
                   intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc
                   2015;81:168-76.  DOI  PubMed  PMC
               34.      Sun B, Hu B. The role of intraductal ultrasonography in pancreatobiliary diseases. Endosc Ultrasound 2016;5:291-9.  DOI  PubMed
                   PMC
               35.      Meister T, Heinzow HS, Woestmeyer C, et al. Intraductal ultrasound substantiates diagnostics of bile duct strictures of uncertain
                   etiology. World J Gastroenterol 2013;19:874-81.  DOI  PubMed  PMC
               36.      Tamada K, Ueno N, Tomiyama T, et al. Characterization of biliary strictures using intraductal ultrasonography: comparison with
                   percutaneous cholangioscopic biopsy. Gastrointestinal Endoscopy 1998;47:341-9.  DOI  PubMed
               37.      Tamada K, Ido K, Ueno N, Kimura K, Ichiyama M, Tomiyama T. Preoperative staging of extrahepatic bile duct cancer with
                   intraductal ultrasonography. Am J Gastroenterol 1995;90:239-46.  PubMed
               38.      Kim HS, Moon JH, Lee YN, et al. Prospective comparison of intraductal ultrasonography-guided transpapillary biopsy and
                   conventional biopsy on fluoroscopy in suspected malignant biliary strictures. Gut Liver 2018;12:463-70.  DOI  PubMed  PMC
               39.      Ho M. The usefulness of IDUS-guided transpapillary bile duct biopsy for the diagnosis of malignant biliary strictures. Endoscopy
                   2011;43:A53.  DOI
               40.      Conway JD, Mishra G. The role of endoscopic ultrasound in biliary strictures. Curr Gastroenterol Rep 2008;10:157-62.  DOI  PubMed
               41.      Garrow D, Miller S, Sinha D, et al. Endoscopic ultrasound: a meta-analysis of test performance in suspected biliary obstruction. Clin
                   Gastroenterol Hepatol 2007;5:616-23.  DOI  PubMed
               42.      Topazian M. Endoscopic ultrasonography in the evaluation of indeterminate biliary strictures. Clin Endosc 2012;45:328-30.  DOI
                   PubMed  PMC
               43.      Onda S, Ogura T, Kurisu Y, et al. EUS-guided FNA for biliary disease as first-line modality to obtain histological evidence. Therap
                   Adv Gastroenterol 2016;9:302-12.  DOI  PubMed  PMC
               44.      De Moura DTH, Moura EGH, Bernardo WM, et al. Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for
                   tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis. Endosc Ultrasound 2018;7:10-9.  DOI  PubMed
                   PMC
               45.      Weilert F, Bhat YM, Binmoeller KF, et al. EUS-FNA is superior to ERCP-based tissue sampling in suspected malignant biliary
                   obstruction: results of a prospective, single-blind, comparative study. Gastrointest Endosc 2014;80:97-104.  DOI  PubMed
               46.      Jo JH, Cho CM, Jun JH, et al; Research Group for Endoscopic Ultrasonography in KSGE. Same-session endoscopic ultrasound-guided
                   fine needle aspiration and endoscopic retrograde cholangiopancreatography-based tissue sampling in suspected malignant biliary
                   obstruction: a multicenter experience. J Gastroenterol Hepatol 2019;34:799-805.  DOI  PubMed
               47.      Heimbach JK, Sanchez W, Rosen CB, Gores GJ. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is
                   associated with disease dissemination. HPB (Oxford) 2011;13:356-60.  DOI  PubMed  PMC
               48.      Micames C, Jowell PS, White R, et al. Lower frequency of peritoneal carcinomatosis in patients with pancreatic cancer diagnosed by
                   EUS-guided FNA vs. percutaneous FNA. Gastrointest Endosc 2003;58:690-5.  DOI  PubMed
               49.      Chen YK, Pleskow DK. SpyGlass single-operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile-duct
   46   47   48   49   50   51   52   53   54   55   56