Page 16 - Read Online
P. 16
Page 10 of 10 Sebastián-Tomás et al. Mini-invasive Surg 2019;3:30 I http://dx.doi.org/10.20517/2574-1225.2019.29
67. Lee L, de Lacy B, Gomez Ruiz M, Liberman AS, Albert MR, et al. A multicenter matched comparison of transanal and robotic total
mesorectal excision for mid and low-rectal adenocarcinoma. Ann Surg 2018; doi: 10.1097/SLA.0000000000002862.
68. Yang Y, Wang F, Zhang P, Shi C, Zou Y, et al. Robot-assisted versus conventional laparoscopic surgery for colorectal disease, focusing
on rectal cancer: a meta-analysis. Ann Surg Oncol 2012;19:3727-36.
69. Liao G, Li YB, Zhao Z, Li X, Deng H, et al. Robotic-assisted surgery versus open surgery in the treatment of rectal cancer: the current
evidence. Sci Rep 2016;6:26981.
70. Li X, Wang T, Yao L, Hu L, Jin P, et al. The safety and effectiveness of robot-assisted versus laparoscopic TME in patients with rectal
cancer: A meta-analysis and systematic review. Medicine (Baltimore) 2017;96:e7585.
71. Hopkins MB, Geiger TM, Bethurum AJ, Ford MM, Muldoon RL, et al. Comparing pathologic outcomes for robotic versus
laparoscopic surgery in rectal cancer resection: a propensity adjusted analysis of 7616 patients. Surg Endosc 2019; doi: 10.1007/
s00464-019-07032-1.
72. Martinez-Perez A, de’Angelis N. Oncologic results of conventional laparoscopic TME: is the intramesorectal plane really acceptable?
Tech Coloproctol 2018;22:831-4.
73. Truong A, Lopez N, Fleshner P, Zaghiyan K. Preservation of pathologic outcomes in robotic versus open resection for rectal cancer:
can the robot fill the minimally invasive gap? Am Surg 2018;84:1876-81.
74. Owens EA, Henary M, El Fakhri G, Choi HS. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 2016;49:1731-40.
75. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003;7:626-34.
76. Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, et al. A review of indocyanine green fluorescent imaging in surgery. Int J
Biomed Imaging 2012;2012:940585.
77. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, et al. Indocyanine green fluorescence-guided surgery after IV injection
in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol 2017;43:1656-67.
78. Degett TH, Andersen HS, Gogenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal
anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 2016;401:767-75.
79. Liberale G, Bohlok A, Bormans A, Bouazza F, Galdon MG, et al. Indocyanine green fluorescence imaging for sentinel lymph node
detection in colorectal cancer: A systematic review. Eur J Surg Oncol 2018;44:1301-6.
80. Lieto E, Auricchio A, Cardella F, Mabilia A, Basile N, et al. Fluorescence-guided surgery in the combined treatment of peritoneal
carcinomatosis from colorectal cancer: preliminary results and considerations. World J Surg 2018;42:1154-60.
81. Kang CY, Halabi WJ, Chaudhry OO, Nguyen V, Pigazzi A, et al. Risk factors for anastomotic leakage after anterior resection for
rectal cancer. JAMA Surg 2013;148:65-71.
82. Vignali A, Gianotti L, Braga M, Radaelli G, Malvezzi L, et al. Altered microperfusion at the rectal stump is predictive for rectal
anastomotic leak. Dis Colon Rectum 2000;43:76-82.
83. De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, et al. Intraoperative angiography with indocyanine green to assess anastomosis
perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc
2019; doi: 10.1007/s00464-019-06730-0.
84. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, et al. The use of indocyanine green fluorescence to assess anastomotic
perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 2013;27:3003-8.
85. Kim JC, Lee JL, Park SH. Interpretative guidelines and possible indications for indocyanine green fluorescence imaging in robot-
assisted sphincter-saving operations. Dis Colon Rectum 2017;60:376-84.
86. Barabino G, Klein JP, Porcheron J, Grichine A, Coll JL, et al. Intraoperative near-infrared fluorescence imaging using indocyanine
green in colorectal carcinomatosis surgery: proof of concept. Eur J Surg Oncol 2016;42:1931-7.
87. Filippello A, Porcheron J, Klein JP, Cottier M, Barabino G. Affinity of Indocyanine green in the detection of colorectal peritoneal
carcinomatosis. Surg Innov 2017;24:103-8.
88. Sluiter NR, Vlek SL, Wijsmuller AR, Brandsma HT, de Vet HCW, et al. Narrow-band imaging improves detection of colorectal
peritoneal metastases: a clinical study comparing advanced imaging techniques. Ann Surg Oncol 2019;26:156-64.
89. Lee SJ, Sohn DK, Han KS, Kim BC, Hong CW, et al. Preoperative tattooing using indocyanine green in laparoscopic colorectal
surgery. Ann Coloproctol 2018;34:206-11.
90. Penna M, Hompes R, Arnold S, Wynn G, Austin R, et al. Transanal total mesorectal excision: international registry results of the first
720 cases. Ann Surg 2017;266:111-7.
91. Roodbeen SX, Penna M, Mackenzie H, Kusters M, Slater A, et al. Transanal total mesorectal excision (TaTME) versus laparoscopic
TME for MRI-defined low rectal cancer: a propensity score-matched analysis of oncological outcomes. Surg Endosc 2019;33:2459-67.
92. Gomez Ruiz M, Parra IM, Palazuelos CM, Martin JA, Fernandez CC, et al. Robotic-assisted laparoscopic transanal total mesorectal
excision for rectal cancer: a prospective pilot study. Dis Colon Rectum 2015;58:145-53.
93. Protyniak B, Jorden J, Farmer R. Multiquadrant robotic colorectal surgery: the da Vinci Xi vs Si comparison. J Robot Surg 2018;12:67-74.
94. Larsen SG, Pfeffer F, Kørner H; Norwegian Colorectal Cancer Group. Norwegian moratorium on transanal total mesorectal excision.
Br J Surg 2019;106:1120-1.