Page 25 - Read Online
P. 25

Tsuboi et al. Mini-invasive Surg 2024;8:26  https://dx.doi.org/10.20517/2574-1225.2023.94  Page 19 of 21

                    settings, but QuickView with Blue Mode is of no additional benefit. Eur J Gastroenterol Hepatol 2012;24:1099-104.  DOI  PubMed
               121.      Shiotani A, Honda K, Kawakami M, et al. Analysis of small-bowel capsule endoscopy reading by using Quickview mode: training
                    assistants for reading may produce a high diagnostic yield and save time for physicians. J Clin Gastroenterol 2012;46:e92-5.  DOI
                    PubMed
               122.      Hosoe N, Rey JF, Imaeda H, et al. Evaluations of capsule endoscopy software in reducing the reading time and the rate of false
                    negatives by inexperienced endoscopists. Clin Res Hepatol Gastroenterol 2012;36:66-71.  DOI  PubMed
               123.      Arieira C, Monteiro S, Dias de Castro F, et al. Capsule endoscopy: is the software TOP 100 a reliable tool in suspected small bowel
                    bleeding? Dig Liver Dis 2019;51:1661-4.  DOI  PubMed
                                                                                            ®
               124.      Gomes C, Pinho R, Ponte A, et al. Evaluation of the sensitivity of the Express View function in the Mirocam  capsule endoscopy
                    software. Scand J Gastroenterol 2020;55:371-5.  DOI  PubMed
               125.      Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging
                    Graph 2007;31:198-211.  DOI  PubMed  PMC
               126.      Shichijo S, Nomura S, Aoyama K, et al. Application of convolutional neural networks in the diagnosis of helicobacter pylori infection
                    based on endoscopic images. EBioMedicine 2017;25:106-11.  DOI  PubMed  PMC
               127.      Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting
                    gastric cancer in endoscopic images. Gastric Cancer 2018;21:653-60.  DOI  PubMed
               128.      Kumagai Y, Takubo K, Kawada K, et al. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic
                    observation of the esophagus. Esophagus 2019;16:180-7.  DOI  PubMed
               129.      Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on
                    a deep convolutional neural network. Gastrointest Endosc 2019;89:357-63.e2.  DOI  PubMed
               130.      Tsuboi A, Oka S, Aoyama K, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-
                    bowel angioectasia in capsule endoscopy images. Dig Endosc 2020;32:382-90.  DOI  PubMed
               131.      Aoki T, Yamada A, Kato Y, et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional
                    neural network. J Gastroenterol Hepatol 2020;35:1196-200.  DOI  PubMed
               132.      Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images
                    based on a deep convolutional neural network. Gastrointest Endosc 2020;92:144-51.e1.  DOI  PubMed
               133.      Aoki T, Yamada A, Aoyama K, et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel
                    capsule endoscopy reading. Dig Endosc 2020;32:585-91.  DOI  PubMed
               134.      Aoki T, Yamada A, Kato Y, et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-
                    based system: a multicenter study. Gastrointest Endosc 2021;93:165-73.e1.  DOI  PubMed
               135.      Soffer S, Klang E, Shimon O, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis.
                    Gastrointest Endosc 2020;92:831-9.e8.  DOI  PubMed
               136.      Dray X, Iakovidis D, Houdeville C, et al. Artificial intelligence in small bowel capsule endoscopy - current status, challenges and
                    future promise. J Gastroenterol Hepatol 2021;36:12-9.  DOI  PubMed
               137.      Qin K, Li J, Fang Y, et al. Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and
                    meta-analysis. Surg Endosc 2022;36:16-31.  DOI  PubMed  PMC
               138.      Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule
                    endoscopy using a deep-learning model. Gastroenterology 2019;157:1044-54.e5.  DOI  PubMed
               139.      Mascarenhas Saraiva MJ, Afonso J, Ribeiro T, et al. Deep learning and capsule endoscopy: automatic identification and
                    differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open
                    Gastroenterol 2021;8:e000753.  DOI  PubMed  PMC
               140.      Piccirelli S, Milluzzo SM, Bizzotto A, Cesaro P, Pecere S, Spada C. Small bowel capsule endoscopy and artificial intelligence: first
                    or second reader? Best Pract Res Clin Gastroenterol 2021;52-3:101742.  DOI  PubMed
               141.      Aoki T, Yamada A, Oka S, et al. Comparison of clinical utility of deep learning-based systems for small-bowel capsule endoscopy
                    reading. J Gastroenterol Hepatol 2024;39:157-64.  DOI  PubMed
               142.      Sumioka A, Tsuboi A, Oka S, et al. Disease surveillance evaluation of primary small-bowel follicular lymphoma using capsule
                    endoscopy images based on a deep convolutional neural network (with video). Gastrointest Endosc 2023;98:968-76.e3.  DOI
                    PubMed
               143.      Saraiva MM, Ferreira JPS, Cardoso H, et al. Artificial intelligence and colon capsule endoscopy: development of an automated
                    diagnostic system of protruding lesions in colon capsule endoscopy. Tech Coloproctol 2021;25:1243-8.  DOI  PubMed
               144.      Yamada A, Niikura R, Otani K, Aoki T, Koike K. Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic
                    images using a deep convolutional neural network. Endoscopy 2021;53:832-6.  DOI  PubMed
               145.      Ribeiro T, Mascarenhas M, Afonso J, et al. Artificial intelligence and colon capsule endoscopy: Automatic detection of ulcers and
                    erosions using a convolutional neural network. J Gastroenterol Hepatol 2022;37:2282-8.  DOI  PubMed
               146.      Mascarenhas M, Ribeiro T, Afonso J, et al. Deep learning and colon capsule endoscopy: automatic detection of blood and colonic
                    mucosal lesions using a convolutional neural network. Endosc Int Open 2022;10:E171-7.  DOI  PubMed  PMC
               147.      Gilabert P, Vitrià J, Laiz P, et al. Artificial intelligence to improve polyp detection and screening time in colon capsule endoscopy.
                    Front Med 2022;9:1000726.  DOI  PubMed  PMC
               148.      Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomed
   20   21   22   23   24   25   26   27   28   29   30