Page 65 - Read Online
P. 65
Page 110 Perkins. J Transl Genet Genom 2022;6:95-110 https://dx.doi.org/10.20517/jtgg.2021.47
138. Montgomery JE, Parsons MJ, Hyde DR. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the
origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 2010;518:800-14. DOI PubMed PMC
139. Ariga J, Walker SL, Mumm JS. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by
targeted neuronal cell ablation. J Vis Exp 2010;(43):2093. DOI PubMed PMC
140. Walker SL, Ariga J, Mathias JR, et al. Automated reporter quantification in vivo: high-throughput screening method for reporter-
based assays in zebrafish. PLoS One 2012;7:e29916. DOI PubMed PMC
141. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR. Retinal degeneration mutants in the mouse. Vision
Res 2002;42:517-25. DOI PubMed
142. Olsson JE, Gordon JW, Pawlyk BS, et al. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal
dominant retinitis pigmentosa. Neuron 1992;9:815-30. DOI PubMed
143. Sakami S, Maeda T, Bereta G, et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form
of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 2011;286:10551-67. DOI PubMed PMC
144. Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal
dominant retinitis pigmentosa. Nat Med 1998;4:967-71. DOI PubMed
145. Tam BM, Moritz OL. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis
pigmentosa. Invest Ophthalmol Vis Sci 2006;47:3234-41. DOI PubMed
146. Tam BM, Moritz OL. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of
retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
J Neurosci 2007;27:9043-53. DOI PubMed PMC
147. Tam BM, Moritz OL. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J
Neurosci 2009;29:15145-54. DOI PubMed PMC
148. Tam BM, Qazalbash A, Lee HC, Moritz OL. The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light
exposure and vitamin a deprivation. Invest Ophthalmol Vis Sci 2010;51:1327-34. DOI PubMed
149. Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O'Brien J. A zebrafish model of retinitis pigmentosa shows
continuous degeneration and regeneration of rod photoreceptors. Cells 2020;9:2242. DOI PubMed PMC
150. Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature
1990;343:364-6. DOI PubMed
151. Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. Retinal microglia signaling affects Müller cell behavior in the
zebrafish following laser injury induction. Glia 2019;67:1150-66. DOI PubMed
152. Silva NJ, Nagashima M, Li J, et al. Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in
adult zebrafish. Glia 2020;68:1445-65. DOI PubMed PMC
153. Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR. Repressing notch signaling and expressing TNFalpha are sufficient to
mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. J Neurosci 2014;34:14403-
19. DOI PubMed PMC
154. Sahu A, Devi S, Jui J, Goldman D. Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury.
Glia 2021;69:2882-98. DOI PubMed PMC
155. Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 2020;370:eabb8598.
DOI PubMed PMC
156. Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. Regeneration associated transcriptional signature of retinal microglia and
macrophages. Sci Rep 2019;9:4768. DOI PubMed PMC