Page 65 - Read Online
P. 65

Page 110                   Perkins. J Transl Genet Genom 2022;6:95-110  https://dx.doi.org/10.20517/jtgg.2021.47

               138.      Montgomery JE, Parsons MJ, Hyde DR. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the
                    origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 2010;518:800-14.  DOI  PubMed  PMC
               139.      Ariga J, Walker SL, Mumm JS. Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by
                    targeted neuronal cell ablation. J Vis Exp 2010;(43):2093.  DOI  PubMed  PMC
               140.      Walker SL, Ariga J, Mathias JR, et al. Automated reporter quantification in vivo: high-throughput screening method for reporter-
                    based assays in zebrafish. PLoS One 2012;7:e29916.  DOI  PubMed  PMC
               141.      Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR. Retinal degeneration mutants in the mouse. Vision
                    Res 2002;42:517-25.  DOI  PubMed
               142.      Olsson JE, Gordon JW, Pawlyk BS, et al. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal
                    dominant retinitis pigmentosa. Neuron 1992;9:815-30.  DOI  PubMed
               143.      Sakami S, Maeda T, Bereta G, et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form
                    of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 2011;286:10551-67.  DOI  PubMed  PMC
               144.      Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal
                    dominant retinitis pigmentosa. Nat Med 1998;4:967-71.  DOI  PubMed
               145.      Tam BM, Moritz OL. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis
                    pigmentosa. Invest Ophthalmol Vis Sci 2006;47:3234-41.  DOI  PubMed
               146.      Tam BM, Moritz OL. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of
                    retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
                    J Neurosci 2007;27:9043-53.  DOI  PubMed  PMC
               147.      Tam BM, Moritz OL. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. J
                    Neurosci 2009;29:15145-54.  DOI  PubMed  PMC
               148.      Tam BM, Qazalbash A, Lee HC, Moritz OL. The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light
                    exposure and vitamin a deprivation. Invest Ophthalmol Vis Sci 2010;51:1327-34.  DOI  PubMed
               149.      Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O'Brien J. A zebrafish model of retinitis pigmentosa shows
                    continuous degeneration and regeneration of rod photoreceptors. Cells 2020;9:2242.  DOI  PubMed  PMC
               150.      Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature
                    1990;343:364-6.  DOI  PubMed
               151.      Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. Retinal microglia signaling affects Müller cell behavior in the
                    zebrafish following laser injury induction. Glia 2019;67:1150-66.  DOI  PubMed
               152.      Silva NJ, Nagashima M, Li J, et al. Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in
                    adult zebrafish. Glia 2020;68:1445-65.  DOI  PubMed  PMC
               153.      Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR. Repressing notch signaling and expressing TNFalpha are sufficient to
                    mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. J Neurosci 2014;34:14403-
                    19.  DOI  PubMed  PMC
               154.      Sahu A, Devi S, Jui J, Goldman D. Notch signaling via Hey1 and Id2b regulates Müller glia's regenerative response to retinal injury.
                    Glia 2021;69:2882-98.  DOI  PubMed  PMC
               155.      Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 2020;370:eabb8598.
                    DOI  PubMed  PMC
               156.      Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. Regeneration associated transcriptional signature of retinal microglia and
                    macrophages. Sci Rep 2019;9:4768.  DOI  PubMed  PMC
   60   61   62   63   64   65   66   67   68   69   70