Page 64 - Read Online
P. 64

Perkins. J Transl Genet Genom 2022;6:95-110  https://dx.doi.org/10.20517/jtgg.2021.47  Page 109

                    neuronal polarity. Nat Cell Biol 2004;6:328-34.  DOI  PubMed
               107.      Crouzier L, Diez C, Richard EM, et al. Loss of Pde6a induces rod outer segment shrinkage and visual alterations in pde6a(Q70X)
                    mutant zebrafish, a relevant model of retinal dystrophy. Front Cell Dev Biol 2021;9:675517.  DOI  PubMed  PMC
               108.      Emran F, Rihel J, Dowling JE. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp
                    2008;(20):923.  DOI  PubMed  PMC
               109.      Kaplan J, Bonneau D, Frezal J, Munnich A, Dufier JL. Clinical and genetic heterogeneity in retinitis pigmentosa. Hum Genet
                    1990;85:635-42.  DOI  PubMed
               110.      Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct
                    retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat 2007;28:81-91.  DOI  PubMed
               111.      Grayson C, Bartolini F, Chapple JP, et al. Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its
                    homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet 2002;11:3065-74.  DOI  PubMed
               112.      Veltel S, Gasper R, Eisenacher E, Wittinghofer A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like
                    3. Nat Struct Mol Biol 2008;15:373-80.  DOI  PubMed
               113.      Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME. The retinitis pigmentosa protein RP2 links
                    pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Genet 2010;19:1358-67.  DOI  PubMed
               114.      Liu F, Chen J, Yu S, et al. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in
                    zebrafish. Hum Mol Genet 2015;24:4648-59.  DOI  PubMed
               115.      Roepman R, Bernoud-Hubac N, Schick DE, et al. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-
                    like proteins in the outer segments of rod photoreceptors. Hum Mol Genet 2000;9:2095-105.  DOI  PubMed
               116.      Boylan JP, Wright AF. Identification of a novel protein interacting with RPGR. Hum Mol Genet 2000;9:2085-93.  DOI  PubMed
               117.      Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet
                    2001;68:1295-8.  DOI  PubMed  PMC
               118.      Gerber S, Perrault I, Hanein S, et al. Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the
                    identification of mutations underlying Leber congenital amaurosis. Eur J Hum Genet 2001;9:561-71.  DOI  PubMed
               119.      Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S. Evidence of RPGRIP1 gene mutations associated with recessive cone-
                    rod dystrophy. J Med Genet 2003;40:616-9.  DOI  PubMed  PMC
               120.      Hong DH, Yue G, Adamian M, Li T. Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the
                    photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 2001;276:12091-9.  DOI  PubMed
               121.      Castagnet P, Mavlyutov T, Cai Y, Zhong F, Ferreira P. RPGRIP1s with distinct neuronal localization and biochemical properties
                    associate selectively with RanBP2 in amacrine neurons. Hum Mol Genet 2003;12:1847-63.  DOI  PubMed
               122.      Zhao Y, Hong DH, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR) - interacting protein: subserving RPGR
                    function and participating in disk morphogenesis. Proc Natl Acad Sci U S A 2003;100:3965-70.  DOI  PubMed  PMC
               123.      Raghupathy RK, Zhang X, Liu F, et al. Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in
                    zebrafish. Sci Rep 2017;7:16881.  DOI  PubMed  PMC
               124.      Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000;289:739-45.
                    DOI  PubMed
               125.      Sullivan LS, Bowne SJ, Birch DG, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis
                    pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 2006;47:3052-64.  DOI  PubMed  PMC
               126.      Sullivan LS, Bowne SJ, Reeves MJ, et al. Prevalence of mutations in eyeGENE probands with a diagnosis of autosomal dominant
                    retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013;54:6255-61.  DOI  PubMed  PMC
               127.      Dryja TP, McGee TL, Hahn LB, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa.
                    N Engl J Med 1990;323:1302-7.  DOI  PubMed
               128.      Morrow JM, Lazic S, Chang BS. A novel rhodopsin-like gene expressed in zebrafish retina. Vis Neurosci 2011;28:325-35.  DOI
                    PubMed
               129.      Morrow JM, Lazic S, Dixon Fox M, et al. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found
                    in other ray-finned fishes. J Exp Biol 2017;220:294-303.  DOI  PubMed
               130.      Morris AC, Schroeter EH, Bilotta J, Wong RO, Fadool JM. Cone survival despite rod degeneration in XOPS-mCFP transgenic
                    zebrafish. Invest Ophthalmol Vis Sci 2005;46:4762-71.  DOI  PubMed  PMC
               131.      Tam BM, Moritz OL, Hurd LB, Papermaster DS. Identification of an outer segment targeting signal in the COOH terminus of
                    rhodopsin using transgenic Xenopus laevis. J Cell Biol 2000;151:1369-80.  DOI  PubMed  PMC
               132.      Kay JN, Roeser T, Mumm JS, et al. Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development
                    2004;131:1331-42.  DOI  PubMed
               133.      Fadool JM. Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev Biol 2003;258:277-90.  DOI  PubMed
               134.      Morris AC, Scholz TL, Brockerhoff SE, Fadool JM. Genetic dissection reveals two separate pathways for rod and cone regeneration
                    in the teleost retina. Dev Neurobiol 2008;68:605-19.  DOI  PubMed  PMC
               135.      Morris AC, Forbes-Osborne MA, Pillai LS, Fadool JM. Microarray analysis of XOPS-mCFP zebrafish retina identifies genes
                    associated with rod photoreceptor degeneration and regeneration. Invest Ophthalmol Vis Sci 2011;52:2255-66.  DOI  PubMed  PMC
               136.      Babino D, Perkins BD, Kindermann A, Oberhauser V, von Lintig J. The role of 11-cis-retinyl esters in vertebrate cone vision. FASEB
                    J 2015;29:216-26.  DOI  PubMed  PMC
               137.      White DT, Sengupta S, Saxena MT, et al. Immunomodulation-accelerated neuronal regeneration following selective rod
                    photoreceptor cell ablation in the zebrafish retina. Proc Natl Acad Sci U S A 2017;114:E3719-E28.  DOI  PubMed  PMC
   59   60   61   62   63   64   65   66   67   68   69