Page 82 - Read Online
P. 82
Page 289 Jyonouchi. J Transl Genet Genom 2023;7:274-90 https://dx.doi.org/10.20517/jtgg.2023.32
73. Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol
2020;80:106210. DOI
74. Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory
interferonopathies. J Clin Invest 2018;128:3041-52. DOI PubMed PMC
75. Li W, Wang W, Wang W, et al. Janus kinase inhibitors in the treatment of type I interferonopathies: a case series from a single center
in China. Front Immunol 2022;13:825367. DOI PubMed PMC
76. Kanazawa N, Ishii T, Takita Y, Nishikawa A, Nishikomori R. Efficacy and safety of baricitinib in Japanese patients with
autoinflammatory type I interferonopathies (NNS/CANDLE, SAVI, And AGS). Pediatr Rheumatol Online J 2023;21:38. DOI
PubMed PMC
77. Lindahl H, Bryceson YT. Neuroinflammation associated with inborn errors of immunity. Front Immunol 2021;12:827815. DOI
PubMed PMC
78. Lin B, Goldbach-Mansky R. Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and
interferonopathies. J Allergy Clin Immunol 2022;149:819-32. DOI PubMed PMC
79. Yuan Y, Jiao B, Qu L, Yang D, Liu R. The development of COVID-19 treatment. Front Immunol 2023;14:1125246. DOI PubMed
PMC
80. Luo C, Ye WR, Shi W, et al. Perfect match: mTOR inhibitors and tuberous sclerosis complex. Orphanet J Rare Dis 2022;17:106.
DOI PubMed PMC
81. Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated PI3Kinase delta syndrome-a multifaceted disease. Front
Pediatr 2021;9:652405. DOI PubMed PMC
82. Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ
syndrome 2: a cohort study. J Allergy Clin Immunol 2016;138:210-8.e9. DOI
83. Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large
patient cohort study. J Allergy Clin Immunol 2017;139:597-606.e4. DOI PubMed PMC
84. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 2013;31:675-704. DOI
PubMed PMC
85. Redenbaugh V, Coulter T. Disorders related to PI3Kδ hyperactivation: characterizing the clinical and immunological features of
activated PI3-kinase delta syndromes. Front Pediatr 2021;9:702872. DOI PubMed PMC
86. Tessarin G, Rossi S, Baronio M, et al. Activated phosphoinositide 3-kinase delta syndrome 1: clinical and immunological data from
an Italian cohort of patients. J Clin Med 2020;9:3335. DOI PubMed PMC
87. Cohen JI. Herpesviruses in the Activated phosphatidylinositol-3-kinase-δ syndrome. Front Immunol 2018;9:237. DOI PubMed
PMC
88. Maccari ME, Abolhassani H, Aghamohammadi A, et al. Disease evolution and response to rapamycin in activated phosphoinositide
3-kinase δ syndrome: the European society for immunodeficiencies-activated phosphoinositide 3-kinase δ syndrome registry. Front
Immunol 2018;9:543. DOI PubMed
89. Jamee M, Moniri S, Zaki-Dizaji M, et al. Clinical, immunological, and genetic features in patients with activated pi3kδ syndrome
(APDS): a systematic review. Clin Rev Allergy Immunol 2020;59:323-33. DOI
90. Moreno-Corona N, Chentout L, Poggi L, et al. Two monogenetic disorders, activated PI3-kinase-δ syndrome 2 and smith-magenis
syndrome, in one patient: case report and a literature review of neurodevelopmental impact in primary immunodeficiencies associated
with disturbed PI3K signaling. Front Pediatr 2021;9:688022. DOI PubMed PMC
91. Kang JM, Kim SK, Kim D, et al. Successful sirolimus treatment for korean patients with activated phosphoinositide 3-kinase δ
syndrome 1: the first case series in Korea. Yonsei Med J 2020;61:542-6. DOI PubMed PMC
92. Rao VK, Webster S, Dalm VASH, et al. Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib.
Blood 2017;130:2307-16. DOI
93. Diaz N, Juarez M, Cancrini C, et al. Seletalisib for activated PI3Kδ syndromes: open-label phase 1b and extension studies. J Immunol
2020;205:2979-87. DOI
94. Rademacher S, Eickholt BJ. PTEN in autism and neurodevelopmental disorders. Cold Spring Harb Perspect Med 2019;9:a036780.
DOI PubMed PMC
95. Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups of inherited PTEN mutations in autism and
tumour syndromes. J Med Genet 2015;52:128-34. DOI PubMed PMC
96. Plamper M, Gohlke B, Woelfle J. PTEN hamartoma tumor syndrome in childhood and adolescence-a comprehensive review and
presentation of the German pediatric guideline. Mol Cell Pediatr 2022;9:3. DOI PubMed PMC
97. Le Belle JE, Sperry J, Ngo A, et al. Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through
altered redox signaling in stem and progenitor cells. Stem Cell Reports 2014;3:725-34. DOI PubMed PMC
98. DeSpenza T Jr, Carlson M, Panchagnula S, et al. PTEN mutations in autism spectrum disorder and congenital hydrocephalus:
developmental pleiotropy and therapeutic targets. Trends Neurosci 2021;44:961-76. DOI PubMed PMC
99. Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest
2019;129:452-64. DOI PubMed PMC
100. Srivastava S, Jo B, Zhang B, et al; Developmental Synaptopathies Consortium. A randomized controlled trial of everolimus for
neurocognitive symptoms in PTEN hamartoma tumor syndrome. Hum Mol Genet 2022;31:3393-404. DOI PubMed PMC