Page 81 - Read Online
P. 81
Jyonouchi. J Transl Genet Genom 2023;7:274-90 https://dx.doi.org/10.20517/jtgg.2023.32 Page 288
autism. J Pers Med 2020;11:21. DOI PubMed PMC
45. Alehashemi S, Goldbach-Mansky R. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-
inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front Immunol
2020;11:1840. DOI PubMed PMC
46. Masters SL, Lagou V, Jéru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin
activation. Sci Transl Med 2016;8:332ra45. DOI PubMed
47. Missoum H, Adadi N, Alami M, et al. Correlation genotype-phenotype: MEFV gene mutations and Moroccan patients with
rheumatoid arthritis. Pan Afr Med J 2022;41:121. DOI PubMed PMC
48. Bordon Y. mtDNA synthesis ignites the inflammasome. Nat Rev Immunol 2018;18:539. DOI PubMed
49. Cuisset L, Jeru I, Dumont B, et al; French CAPS study group. Mutations in the autoinflammatory cryopyrin-associated periodic
syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France. Ann Rheum Dis 2011;70:495-9.
DOI
50. Mulazzani E, Wagner D, Havla J, et al. Neurological phenotypes in patients with NLRP3-, MEFV-, and TNFRSF1A low-penetrance
variants. J Neuroinflammation 2020;17:196. DOI PubMed PMC
51. Reyes AZ, Hu KA, Teperman J, et al. Anti-inflammatory therapy for COVID-19 infection: the case for colchicine. Ann Rheum Dis
2021;80:550-7. DOI
52. Potere N, Del Buono MG, Caricchio R, et al. Interleukin-1 and the NLRP3 inflammasome in COVID-19: pathogenetic and
therapeutic implications. EBioMedicine 2022;85:104299. DOI PubMed PMC
53. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-
associated inflammation. Atherosclerosis 2018;269:262-71. DOI
54. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology 2018;57:i4-11. DOI PubMed
PMC
55. Shah B, Allen N, Harchandani B, et al. Effect of colchicine on platelet-platelet and platelet-leukocyte interactions: a pilot study in
healthy subjects. Inflammation 2016;39:182-9. DOI PubMed PMC
56. Dubois EA, Rissmann R, Cohen AF. Rilonacept and canakinumab. Br J Clin Pharmacol 2011;71:639-41. DOI PubMed PMC
57. Baskar S, Klein AL, Zeft A. The use of IL-1 receptor antagonist (anakinra) in idiopathic recurrent pericarditis: a narrative review.
Cardiol Res Pract 2016;2016:7840724. DOI PubMed PMC
58. Jyonouchi H, Geng L. Resolution of EEG findings and clinical improvement in a patient with encephalopathy and ESES with a
combination of immunomodulating agents other than corticosteroids: a case report. Epilepsy Behav Rep 2020;14:100379. DOI
PubMed PMC
59. Kyriazopoulou E, Huet T, Cavalli G, et al; International Collaborative Group for Anakinra in COVID-19. Effect of anakinra on
mortality in patients with COVID-19: a systematic review and patient-level meta-analysis. Lancet Rheumatol 2021;3:e690-7. DOI
PubMed
60. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase
plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med 2021;27:1752-60. DOI PubMed
PMC
61. Dahms K, Mikolajewska A, Ansems K, Metzendorf MI, Benstoem C, Stegemann M. Anakinra for the treatment of COVID-19
patients: a systematic review and meta-analysis. Eur J Med Res 2023;28:100. DOI PubMed PMC
62. Siebeler R, de Winther MPJ, Hoeksema MA. The regulatory landscape of macrophage interferon signaling in inflammation. J Allergy
Clin Immunol 2023;152:326-37. DOI PubMed
63. Bastard P, Gervais A, Le Voyer T, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70
years old and account for ~20% of COVID-19 deaths. Sci Immunol 2021;6:62. DOI PubMed PMC
64. Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol 2022;22:471-83. DOI PubMed PMC
65. Manna R, Rigante D. The everchanging framework of autoinflammation. Intern Emerg Med 2021;16:1759-70. DOI PubMed PMC
66. d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I interferonopathies in children: an overview. Front Pediatr 2021;9:631329.
DOI PubMed PMC
67. Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol
2023;14:1110593. DOI PubMed PMC
68. Haşlak F, Kılıç Könte E, Aslan E, Şahin S, Kasapçopur Ö. Type I interferonopathies in childhood. Balkan Med J 2023;40:165-74.
DOI PubMed PMC
69. Volpi S, Picco P, Caorsi R, Candotti F, Gattorno M. Type I interferonopathies in pediatric rheumatology. Pediatr Rheumatol Online J
2016;14:35. DOI PubMed PMC
70. Jain NK, Tailang M, Jain HK, et al. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: a review.
Front Pharmacol 2023;14:1135145. DOI PubMed PMC
71. Mortezavi M, Martin DA, Schulze-Koops H. After 25 years of drug development, do we know JAK? RMD Open 2022;8:e002409.
DOI PubMed PMC
72. Mella P, Schumacher RF, Cranston T, de Saint Basile G, Savoldi G, Notarangelo LD. Eleven novel JAK3 mutations in patients with
severe combined immunodeficiency-including the first patients with mutations in the kinase domain. Hum Mutat 2001;18:355-6.
DOI PubMed