Page 40 - Read Online
P. 40

Donskov et al. J Transl Genet Genom 2021;5:136-62  https://dx.doi.org/10.20517/jtgg.2021.12  Page 25

               96.       Shi L, Zhang Z, Su B. Sex biased gene expression profiling of human brains at major developmental stages. Sci Rep 2016;6:21181.
                    DOI  PubMed  PMC
               97.       Buroker NE, Young ME, Wei C, et al. The dominant negative thyroid hormone receptor beta-mutant {Delta}337T alters
                    PPAR{alpha} signaling in heart. Am J Physiol Endocrinol Metab 2007;292:E453-60.  DOI  PubMed
               98.       Swanson HI, Wada T, Xie W, et al. Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos
                    2013;41:1-11.  DOI  PubMed  PMC
               99.       Liu S, Downes M, Evans RM. Metabolic regulation by nuclear receptors. In: Nakao K, Minato N, Uemoto S, editors. Innovative
                    medicine. Tokyo: Springer Japan; 2015. p. 25-37.
               100.      Moutinho M, Landreth GE. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease. J Lipid Res 2017;58:1937-49.
                    DOI  PubMed  PMC
               101.      Fitz NF, Nam KN, Koldamova R, Lefterov I. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for
                    Alzheimer's disease. Br J Pharmacol 2019;176:3599-610.  DOI  PubMed  PMC
               102.      Corredor B, Dattani M, Gertosio C, Bozzola M. Tall stature: a challenge for clinicians. Curr Pediatr Rev 2019;15:10-21.  DOI
                    PubMed  PMC
               103.      De Magalhaes Filho CD, Downes M, Evans RM. Farnesoid X receptor an emerging target to combat obesity. Dig Dis 2017;35:185-
                    90.  DOI  PubMed  PMC
               104.      Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014;72 Pt A:104-16.  DOI
                    PubMed  PMC
               105.      Rees E, Owen MJ. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med
                    2020;12:43.  DOI  PubMed  PMC
               106.      Owen MJ, O'Donovan MC. Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry
                    2017;16:227-35.  DOI  PubMed  PMC
               107.      Aberg KA, Xie LY, McClay JL, et al. Testing two models describing how methylome-wide studies in blood are informative for
                    psychiatric conditions. Epigenomics 2013;5:367-77.  DOI  PubMed  PMC
               108.      Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J
                    Hum Genet 2008;82:696-711.  DOI  PubMed  PMC
               109.      Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple
                    brain regions in autism. Mol Psychiatry 2014;19:862-71.  DOI  PubMed  PMC
               110.      Starnawska A, Tan Q, McGue M, et al. Epigenome-wide association study of cognitive functioning in middle-aged monozygotic
                    twins. Front Aging Neurosci 2017;9:413.  DOI  PubMed  PMC
               111.      Ianov L, Riva A, Kumar A, Foster TC. DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-
                    related cognitive impairment. Front Aging Neurosci 2017;9:249.  DOI  PubMed  PMC
               112.      Vogel Ciernia A, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci
                    2016;17:411-23.  DOI  PubMed  PMC
               113.      Montano C, Taub MA, Jaffe A, et al. Association of DNA methylation differences with schizophrenia in an epigenome-wide
                    association study. JAMA Psychiatry 2016;73:506-14.  DOI  PubMed  PMC
               114.      Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs MO, Fañanás L. Genome-wide methylation study on depression:
                    differential methylation and variable methylation in monozygotic twins. Transl Psychiatry 2015;5:e557.  DOI  PubMed  PMC
               115.      Palma-Gudiel H, Córdova-Palomera A, Eixarch E, Deuschle M, Fañanás L. Maternal psychosocial stress during pregnancy alters the
                    epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics 2015;10:893-902.
                    DOI  PubMed  PMC
               116.      Chen S, Mukherjee N, Janjanam VD, et al. Consistency and variability of DNA methylation in women during puberty, young
                    adulthood, and pregnancy. Genet Epigenet 2017;9:1179237X17721540.  DOI  PubMed  PMC
               117.      Lomniczi A, Loche A, Castellano JM, et al. Epigenetic control of female puberty. Nat Neurosci 2013;16:281-9.  DOI  PubMed  PMC
               118.      Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol 2015;13:7.  DOI  PubMed  PMC
               119.      Corley SM, Tsai SY, Wilkins MR, Shannon Weickert C. Transcriptomic analysis shows decreased cortical expression of NR4A1,
                    NR4A2 and RXRB in schizophrenia and provides evidence for nuclear receptor dysregulation. PLoS One 2016;11:e0166944.  DOI
                    PubMed  PMC
               120.      Maire A, Teyssier C, Balaguer P, Bourguet W, Germain P. Regulation of RXR-RAR heterodimers by RXR- and RAR-specific
                    ligands and their combinations. Cells 2019;8:1392.  DOI  PubMed  PMC
               121.      Penvose A, Keenan JL, Bray D, Ramlall V, Siggers T. Comprehensive study of nuclear receptor DNA binding provides a revised
                    framework for understanding receptor specificity. Nat Commun 2019;10:2514.  DOI  PubMed  PMC
               122.      Lenroot RK, Gogtay N, Greenstein DK, et al. Sexual dimorphism of brain developmental trajectories during childhood and
                    adolescence. Neuroimage 2007;36:1065-73.  DOI  PubMed  PMC
               123.      Marrocco J, McEwen BS. Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci 2017;18:373-83.  DOI  PubMed
                    PMC
               124.      Hu VW, Sarachana T, Sherrard RM, Kocher KM. Investigation of sex differences in the expression of RORA and its transcriptional
                    targets in the brain as a potential contributor to the sex bias in autism. Mol Autism 2015;6:7.  DOI  PubMed  PMC
               125.      Lenroot RK, Giedd JN. The changing impact of genes and environment on brain development during childhood and adolescence:
                    initial findings from a neuroimaging study of pediatric twins. Dev Psychopathol 2008;20:1161-75.  DOI  PubMed  PMC
               126.      Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG. Thyroid hormones states and brain development
   35   36   37   38   39   40   41   42   43   44   45