Page 38 - Read Online
P. 38

Donskov et al. J Transl Genet Genom 2021;5:136-62  https://dx.doi.org/10.20517/jtgg.2021.12  Page 23

               37.       O'Sullivan SE. An update on PPAR activation by cannabinoids. Br J Pharmacol 2016;173:1899-910.  DOI  PubMed  PMC
               38.       Lev-Ran S, Roerecke M, Le Foll B, George TP, McKenzie K, Rehm J. The association between cannabis use and depression: a
                    systematic review and meta-analysis of longitudinal studies. Psychol Med 2014;44:797-810.  DOI  PubMed
               39.       Berger M, Nelson B, Markulev C, et al. Relationship between polyunsaturated fatty acids and psychopathology in the NEURAPRO
                    clinical trial. Front Psychiatry 2019;10:393.  DOI  PubMed  PMC
               40.       Amminger  GP,  McGorry  PD.  Update  on  ω-3  polyunsaturated  fatty  acids  in  early-stage  psychotic  disorders.
                    Neuropsychopharmacology 2012;37:309-10.  DOI  PubMed  PMC
               41.       Olivares AM, Moreno-Ramos OA, Haider NB. Role of nuclear receptors in central nervous system development and associated
                    diseases. J Exp Neurosci 2015;9:93-121.  DOI  PubMed  PMC
               42.       Ferrara SJ, Scanlan TS. A CNS-targeting prodrug strategy for nuclear receptor modulators. J Med Chem 2020;63:9742-51.  DOI
                    PubMed
               43.       Mackeh R, Marr AK, Dargham SR, Syed N, Fakhro KA, Kino T. Single-nucleotide variations of the human nuclear hormone receptor
                    genes in 60,000 individuals. J Endocr Soc 2018;2:77-90.  DOI  PubMed  PMC
               44.       Achermann JC, Schwabe J, Fairall L, Chatterjee K. Genetic disorders of nuclear receptors. J Clin Invest 2017;127:1181-92.  DOI
                    PubMed  PMC
               45.       Guissart C, Latypova X, Rollier P, et al. Dual molecular effects of dominant RORA mutations cause two variants of syndromic
                    intellectual disability with either autism or cerebellar ataxia. Am J Hum Genet 2018;102:744-59.  DOI  PubMed  PMC
               46.       Rudolf G, Lesca G, Mehrjouy MM, et al. Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy. Eur J
                    Hum Genet 2016;24:1761-70.  DOI  PubMed  PMC
               47.       Millard CJ, Watson PJ, Fairall L, Schwabe JW. An evolving understanding of nuclear receptor coregulator proteins. J Mol
                    Endocrinol 2013;51:T23-36.  DOI  PubMed  PMC
               48.       Malovannaya A, Lanz RB, Jung SY, et al. Analysis of the human endogenous coregulator complexome. Cell 2011;145:787-99.  DOI
                    PubMed  PMC
               49.       Broekema MF, Hollman DAA, Koppen A, et al. Profiling of 3696 nuclear receptor-coregulator interactions: a resource for biological
                    and clinical discovery. Endocrinology 2018;159:2397-407.  DOI  PubMed
               50.       Tagami T, Madison LD, Nagaya T, Jameson JL. Nuclear receptor corepressors activate rather than suppress basal transcription of
                    genes that are negatively regulated by thyroid hormone. Mol Cell Biol 1997;17:2642-8.  DOI  PubMed  PMC
               51.       Berghagen H, Ragnhildstveit E, Krogsrud K, Thuestad G, Apriletti J, Saatcioglu F. Corepressor SMRT functions as a coactivator for
                    thyroid hormone receptor T3Ralpha from a negative hormone response element. J Biol Chem 2002;277:49517-22.  DOI  PubMed
               52.       Tora L, Gronemeyer H, Turcotte B, Gaub MP, Chambon P. The N-terminal region of the chicken progesterone receptor specifies
                    target gene activation. Nature 1988;333:185-8.  DOI  PubMed
               53.       Shao D, Lazar MA. Modulating nuclear receptor function: may the phos be with you. J Clin Invest 1999;103:1617-8.  DOI  PubMed
                    PMC
               54.       Lonard DM, Lanz RB, O'Malley BW. Nuclear receptor coregulators and human disease. Endocr Rev 2007;28:575-87.  DOI  PubMed
               55.       Kong Y, Zhou W, Sun Z. Nuclear receptor corepressors in intellectual disability and autism. Mol Psychiatry 2020;25:2220-36.  DOI
                    PubMed  PMC
               56.       Tabet AC, Leroy C, Dupont C, et al. De novo deletion of TBL1XR1 in a child with non-specific developmental delay supports its
                    implication in intellectual disability. Am J Med Genet A 2014;164A:2335-7.  DOI  PubMed
               57.       Vaqueiro AC, de Oliveira CP, Cordoba MS, et al. Expanding the spectrum of TBL1XR1 deletion: report of a patient with brain and
                    cardiac malformations. Eur J Med Genet 2018;61:29-33.  DOI  PubMed
               58.       Sakaguchi Y, Uehara T, Suzuki H, et al. Haploinsufficiency of NCOR1 associated with autism spectrum disorder, scoliosis, and
                    abnormal palatogenesis. Am J Med Genet A 2018;176:2466-9.  DOI  PubMed
               59.       Zhou W, He Y, Rehman AU, et al; DDD study. Author correction: loss of function of NCOR1 and NCOR2 impairs memory through
                    a novel GABAergic hypothalamus-CA3 projection. Nat Neurosci 2019;22:1533.  DOI  PubMed
               60.       Sajan SA, Jhangiani SN, Muzny DM, et al. Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking
                    mutations in MECP2. Genet Med 2017;19:13-9.  DOI  PubMed  PMC
               61.       Reay WR, Atkins JR, Quidé Y, Carr VJ, Green MJ, Cairns MJ. Polygenic disruption of retinoid signalling in schizophrenia and a
                    severe cognitive deficit subtype. Mol Psychiatry 2020;25:719-31.  DOI  PubMed  PMC
               62.       Viosca J, Lopez-Atalaya JP, Olivares R, Eckner R, Barco A. Syndromic features and mild cognitive impairment in mice with genetic
                    reduction on p300 activity: differential contribution of p300 and CBP to Rubinstein-Taybi syndrome etiology. Neurobiol Dis
                    2010;37:186-94.  DOI  PubMed
               63.       Qvist P, Christensen JH, Vardya I, et al. The schizophrenia-associated BRD1 gene regulates behavior, neurotransmission, and
                    expression of schizophrenia risk enriched gene sets in mice. Biol Psychiatry 2017;82:62-76.  DOI  PubMed
               64.       Rajkumar AP, Qvist P, Donskov JG, et al. Reduced Brd1 expression leads to reversible depression-like behaviors and gene-
                    expression changes in female mice. Transl Psychiatry 2020;10:239.  DOI  PubMed  PMC
               65.       Qvist P, Eskildsen SF, Hansen B, et al. Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons
                                                         +/-
                    and cortical parvalbumin expressing interneurons in Brd1  mice. Sci Rep 2018;8:16486.  DOI  PubMed  PMC
               66.       Oliveira AM, Estévez MA, Hawk JD, Grimes S, Brindle PK, Abel T. Subregion-specific p300 conditional knock-out mice exhibit
                    long-term memory impairments. Learn Mem 2011;18:161-9.  DOI  PubMed  PMC
               67.       Valor LM, Pulopulos MM, Jimenez-Minchan M, Olivares R, Lutz B, Barco A. Ablation of CBP in forebrain principal neurons causes
                    modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J
   33   34   35   36   37   38   39   40   41   42   43