Page 18 - Read Online
P. 18

Page 12                                                             Bax. J Transl Genet Genom 2020;4:1-16  I  http://dx.doi.org/10.20517/jtgg.2020.08

               achieve a greater disease awareness in the healthcare community and to provide timely access to treatments
               before the development of irreversible organ damage. With an improved understanding of this disorder,
               the future is likely to see the identification of alternative therapeutic targets or the application of combined
               treatment approaches to prevent the specific pathologies of this complex, multisystemic disorder. Untoward
               effects of thymidine phosphorylase overexpression and deoxyribonucleotide pool modifications will require
               careful surveillance.


               DECLARATIONS
               Authors’ contributions
               The author contributed solely to the article.

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               This author’s work is supported by the Medical Research Council (grant number: K025406) https://mrc.
               ukri.org/ and the Lily Foundation https://www.thelilyfoundation.org.uk/

               Conflicts of interest
               The author’s Institution, St George’s, University of London holds a licensing agreement with Orphan
               Technologies for the clinical development of EE-TP.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2020.


               REFERENCES
               1.   Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science
                   1999;283:689-92.
               2.   Hirano M, Nishigaki Y, Martí R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a disease of two genomes.
                   Neurologist 2004;10:8-17.
               3.   Okamura K, Santa T, Nagae K, Omae T. Congenital oculoskeletal myopathy with abnormal muscle and liver mitochondria. J Neurol Sci
                   1976;27:79-91.
               4.   Ionasescu V. Oculogastrointestinal muscular dystrophy. Am J Med Genet 1983;15:103-12.
               5.   Ionasescu V, Thompson SH, Ionasescu R, Searby C, Anuras S, et al. Inherited ophthalmoplegia with intestinal pseudo-obstruction. J
                   Neurol Sci 1983;59:215-28.
               6.   Ionasescu V V, Thompson HS, Aschenbrener C, Anuras S, Risk WS. Late-onset oculogastrointestinal muscular dystrophy. Am J Med
                   Genet 1984;18:781-8.
               7.   Bardosi A, Creutzfeldt W, DiMauro S, Felgenhauer K, Friede RL, et al. Myo-, neuro-, gastrointestinal encephalopathy (MNGIE
                   syndrome) due to partial deficiency of cytochrome-c-oxidase. Acta Neuropathol 1987;74:248-258.
               8.   Faber J, Fich A, Steinberg A, Steiner I, Granot E, et al. Familial intestinal pseudoobstruction dominated by a progressive neurologic
                   disease at a young age. Gastroenterology 1987;92:786-90.
               9.   Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE):
                   clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994;44:721-7.
               10.   Nishino I, Spinazzola A, Papadimitriou A, Hammans S, Steiner I, et al. Mitochondrial neurogastrointestinal encephalomyopathy: an
                   autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol 2000;47:792-800.
   13   14   15   16   17   18   19   20   21   22   23