Page 13 - Read Online
P. 13

Zhang et al. J Transl Genet Genom 2024;8:302-11  https://dx.doi.org/10.20517/jtgg.2024.39  Page 310

               15.      Fogo AB, Bostad L, Svarstad E, et al; all members of the International Study Group of Fabry Nephropathy (ISGFN). Scoring system
                   for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant
                   2010;25:2168-77.  DOI  PubMed  PMC
               16.      Tøndel C, Bostad L, Larsen KK, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol
                   2013;24:137-48.  DOI  PubMed  PMC
               17.      Valbuena C, Carvalho E, Bustorff M, et al. Kidney biopsy findings in heterozygous Fabry disease females with early nephropathy.
                   Virchows Arch 2008;453:329-38.  DOI
               18.      Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of globotriaosylceramide in podocytes in Fabry
                   nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol 2020;31:865-75.  DOI  PubMed  PMC
               19.      Trimarchi H, Canzonieri R, Costales-Collaguazo C, et al. Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry
                   podocytes. Clin Kidney J 2019;12:53-60.  DOI  PubMed  PMC
               20.      Nikolaenko V, Warnock DG, Mills K, Heywood WE. Elucidating the toxic effect and disease mechanisms associated with Lyso-Gb3
                   in Fabry disease. Hum Mol Genet 2023;32:2464-72.  DOI  PubMed  PMC
               21.      Matafora V, Cuccurullo M, Beneduci A, et al. Early markers of Fabry disease revealed by proteomics. Mol Biosyst 2015;11:1543-51.
                   DOI
               22.      Trimarchi H, Ortiz A, Sánchez-Niño MD. Lyso-Gb3 increases αvβ3 integrin gene expression in cultured human podocytes in Fabry
                   nephropathy. J Clin Med 2020;9:3659.  DOI  PubMed  PMC
               23.      Braun F, Abed A, Sellung D, et al. Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy. J Clin Invest
                   2023;133:e157782.  DOI
               24.      Zarate YA, Hopkin DRJ. Fabry’s disease. Lancet 2008;372:1427-35.  DOI  PubMed
               25.      El Dib R, Gomaa H, Carvalho RP, et al. Enzyme replacement therapy for anderson-Fabry disease. Cochrane Database Syst Rev
                   2016;7:CD006663.  DOI  PubMed  PMC
               26.      Cybulla M, Nicholls K, Feriozzi S, et al; FOS Study Group. Renoprotective effect of agalsidase alfa: a long-term follow-up of patients
                   with Fabry disease. J Clin Med 2022;11:4810.  DOI  PubMed  PMC
               27.      Beck M, Ramaswami U, Hernberg-Ståhl E, et al. Twenty years of the Fabry outcome survey (FOS): insights, achievements, and
                   lessons learned from a global patient registry. Orphanet J Rare Dis 2022;17:238.  DOI  PubMed  PMC
               28.      Tøndel C, Thurberg BL, DasMahapatra P, et al. Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the
                   effect of agalsidase beta in affected tissues. Mol Genet Metab 2022;137:328-41.  DOI
               29.      Nowak A, Dormond O, Monzambani V, Huynh-Do U, Barbey F. Agalsidase-β should be proposed as first line therapy in classic male
                   Fabry patients with undetectable α-galactosidase A activity. Mol Genet Metab 2022;137:173-8.  DOI  PubMed
               30.      Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international
                   cohort study. J Med Genet 2018;55:351-8.  DOI  PubMed  PMC
               31.      Weidemann F, Jovanovic A, Herrmann K, Vardarli I. Chaperone therapy in Fabry disease. Int J Mol Sci 2022;23:1887.  DOI  PubMed
                   PMC
               32.      Yam GH, Zuber C, Roth J. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding
                   disorder. FASEB J 2005;19:12-8.  DOI
               33.      Müntze J, Gensler D, Maniuc O, et al. Oral chaperone therapy migalastat for treating Fabry disease: enzymatic response and serum
                   biomarker changes after 1 year. Clin Pharmacol Ther 2019;105:1224-33.  DOI  PubMed  PMC
               34.      Coutinho MF, Santos JI, Alves S. Less is more: substrate reduction therapy for lysosomal storage disorders. Int J Mol Sci
                   2016;17:1065.  DOI
               35.      Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry
                   disease, provides sustained plasma concentrations and favorable pharmacodynamics: a-year phase 1/2 clinical trial. J Inherit Metab Dis
                   2019;42:534-44.  DOI
               36.      Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: progress, challenges, and outlooks on gene-editing.
                   Mol Genet Metab 2021;134:117-31.  DOI
               37.      Song HY, Chiang HC, Tseng WL, et al. Using CRISPR/Cas9-mediated GLA gene knockout as an in vitro drug screening model for
                   Fabry disease. Int J Mol Sci 2016;17:2089.  DOI  PubMed  PMC
               38.      Germain DP. Reconceptualizing podocyte damage in Fabry disease: new findings identify α-synuclein as a putative therapeutic target.
                   Kidney Int 2024;105:237-9.  DOI  PubMed
               39.      Liebau MC, Braun F, Höpker K, et al. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One
                   2013;8:e63506.  DOI  PubMed  PMC
               40.      Li P, Xi Y, Zhang Y, et al. GLA mutations suppress autophagy and stimulate lysosome generation in Fabry disease. Cells 2024;13:437.
                   DOI  PubMed  PMC
               41.      Tuttolomondo A, Simonetta I, Riolo R, et al. Pathogenesis and molecular mechanisms of Anderson-Fabry disease and possible new
                   molecular addressed therapeutic strategies. Int J Mol Sci 2021;22:10088.  DOI  PubMed  PMC
               42.      Warnock DG, Ortiz A, Mauer M, et al; Fabry Registry. Renal outcomes of agalsidase beta treatment for Fabry disease: role of
                   proteinuria and timing of treatment initiation. Nephrol Dial Transplant 2012;27:1042-9.  DOI  PubMed  PMC
               43.      Warnock DG, Thomas CP, Vujkovac B, et al. Antiproteinuric therapy and Fabry nephropathy: factors associated with preserved
                   kidney function during agalsidase-beta therapy. J Med Genet 2015;52:860-6.  DOI  PubMed  PMC
   8   9   10   11   12   13   14   15   16   17   18