Page 161 - Read Online
P. 161
Page 28 of 31 Guerra et al. J Transl Genet Genom 2019;3:9. I https://doi.org/10.20517/jtgg.2018.03
Brain Lang 2017;172:22-9.
110. Padovani A, Cosseddu M, Premi E, Archetti S, Papetti A, et al. The speech and language FOXP2 gene modulates the phenotype of
frontotemporal lobar degeneration. J Alzheimers Dis 2010;22:923-31.
111. Rogalski E, Weintraub S, Mesulam M. Are there susceptibility factors for primary progressive aphasia? Brain Lang 2013;127:135-8.
112. Flanagan, EP, Baker MC, Perkerson RB, Duffy JR, Strand EA, et al. Dominant frontotemporal dementia mutations in 140 cases of primary
progressive aphasia and speech apraxia. Dement Geriatr Cogn Disord 2015;39:281-6.
113. Bishop D. Uncommon understanding: development and disorders of language comprehension in children. East Sussex: Psychology Press;
1997.
114. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, et al. Caspr2, a new member of the neurexin superfamily, is localized at the
juxtaparanodes of myelinated axons and associates with K+ Channels. Neuron 1999;24:1037-47.
115. Toma C, Pierce KD, Shaw AD, Heath A, Mitchell PB, et al. Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to
be a primary risk gene for psychiatric disorders. PLoS Genet 2018;14:e1007535.
116. Trajkovski V. Medical genetics and its implementation in speech, language and hearing disorders. In: Milošević N, editor. II Congress of
Logopedists of Serbia. Belgrade, Serbia: Association of logopedists of Serbia; 2015.
117. Centanni TM, Sanmann JN, Green JR, Iuzzini-Seigel J, Bartlett C, et al. The role of candidate-gene CNTNAP2 in childhood apraxia of
speech and specific language impairment. Am J Med Genet B Neuropsychiatr Genet 2015;168:536-43.
118. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, et al. Recessive symptomatic focal epilepsy and mutant contactin-
associated protein-like 2. N Eng J Med 2006;354:1370-7.
119. Condro MC, White SA. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. J Comp Neurol
2014;522:169-85.
120. Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL, et al. CMIP and ATP2C2 modulate phonological short-term memory
in language impairment. Am J Human Genet 2009;85:264-72.
121. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, et al. Molecular genetics of adult ADHD: converging evidence from genome-
wide association and extended pedigree linkage studies. J Neural Transm 2008;115:1573-85.
122. Newbury D, Monaco A. Genetic advances in the study of speech and language disorders. Neuron 2010;68:309-20.
123. Filges I, Shimojima K, Okamoto N, Röthlisberger B, Weber P, et al. Reduced expression by SETBP1 haploinsufficiency causes
developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J Med Genet 2010;48:117-
22.
124. Marseglia G, Scordo M, Pescucci C, Nannetti G, Biagini E, et al. 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency
associated with mild mental retardation and expressive speech impairment. Eur J Med Genet 2012;55:216-21.
125. Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW, et al. A genome-wide association study for reading and language
abilities in two population cohorts. Genes Brain Behav 2013;12:645-52.
126. Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC, et al. Genome-wide screening for DNA variants associated with reading and
language traits. Genes Brain Behav 2014;13:686-701.
127. St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS, et al. Common variation near ROBO2 is associated with expressive
vocabulary in infancy. Nat Commun 2014;5:4831.
128. Eicher JD, Powers NR, Miller LL, Akshoomoff N, Amaral DG, et al. Genome-wide association study of shared components of reading
disability and language impairment. Genes Brain Behav 2013;12:792-801.
129. Nudel R, Simpson NH, Baird G, O’Hare A, Conti-Ramsden G, et al. Genome-wide association analyses of child genotype effects and
parent-of-origin effects in specific language impairment. Genes Brain Behav 2014;13:418-29.
130. Villanueva P, Nudel R, Hoischen, A, Fernández MA, Simpson NH, et al. Exome sequencing in an admixed isolated population indicates
NFXL1 variants confer a risk for specific language impairment. PLoS Genet 2015;11:e1004925.
131. Kalnak N, Stamouli S, Peyrard-Janvid M, Rabkina I, Becker M, et al. Enrichment of rare copy number variation in children with
developmental language disorder. Clin Genet 2018;94:313-20.
132. Ercan-Sencicek A, Davis-Wright N, Sanders S, Oakman N, Valdes L, et al. A balanced t(10;15) translocation in a male patient with
developmental language disorder. Eur J Med Genet 2012;55:128-31.
133. Kuppen S, Goswami U. Developmental trajectories for children with dyslexia and low IQ poor readers. Dev Psychol 2016;52:717-34.
134. What are reading disorders? NICHD - Eunice Kennedy Shriver- NIH. Available from: https://www.nichd.nih.gov/health/topics/reading/
conditioninfo/disorders. [Last accessed on 11 Jun 2019]
135. Catts H. Defining dyslexia as a developmental language disorder. Ann Dyslexia 1989;39:50-64.
136. Paloyelis Y, Rijsdijk F, Wood A, Asherson P, Kuntsi J. The genetic association between ADHD symptoms and reading difficulties: the role
of inattentiveness and IQ. J Abnor Child Psychol 2010;38:1083-95.
137. Germanò E, Gagliano A, Curatolo P. Comorbidity of ADHD and dyslexia. Devl Neuropsychol 2010;35:475-93.
138. Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res
Commun 2014;452:236-43.
139. Fagerheim T, Raeymaekers P, Tønnessen FE, Pedersen M, Tranebjaerg L, et al. A new gene (DYX3) for dyslexia is located on chromosome 2.
J Med Genet 1999;36:664-9.
140. Massinen S, Wang J, Laivuori K, Bieder A, Tapia Paez I, et al. Genomic sequencing of a dyslexia susceptibility haplotype encompassing
ROBO1. J Neurodev Disord 2016;27;8:4.
141. Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, et al. Independent genome-wide scans identify a chromosome 18 quantitative-