Page 159 - Read Online
P. 159
Page 26 of 31 Guerra et al. J Transl Genet Genom 2019;3:9. I https://doi.org/10.20517/jtgg.2018.03
45. Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, et al. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008;9:222-34.
46. Bianchi S, Battistella G, Huddleston H, Shcharf R, Fleysher L, et al. Phenotype- and genotype-specific structural alterations in spasmodic
dysphonia. Mov Disord 2017;32:560-8.
47. Simonyan K, Tovar-Moll F, Ostuni J, Hallett M, Kalasinsky VF, et al. Focal white matter changes in spasmodic dysphonia: a combined
diffusion tensor imaging and neuropathological study. Brain 2008;131:447-59.
48. Blitzer A, Brin M, Simonyan K, Ozelious LJ, Frucht SJ, et al. Phenomenology, genetics, and CNS network abnormalities in laryngeal
dystonia: a 30-year experience. Laryngoscope 2017;128:S1-9.
49. Simonyan K, Ludlow C. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study. Cereb Cortex
2010;20:2749-59.
50. Putzel G, Fuchs T, Battistella G, Rubien-Thomas E, Frucht SJ, et al. GNAL mutation in isolated laryngeal dystonia. Mov Disord
2016;31:750-5.
51. Sharma N, Franco R. Consideration of genetic contributions to the risk for spasmodic dysphonia. Otolaryngol Head Neck Surg
2011;145:369-70.
52. Putzel G, Battistella G, Rumbach, A Ozelius LJ, Sabuncu MR, et al. Polygenic risk of spasmodic dysphonia is associated with vulnerable
sensorimotor connectivity. Cereb Cortex 2016;28:158-66.
53. Ludlow C. Spasmodic dysphonia: a laryngeal control disorder specific to speech. J Neurosci 2011;31:793-7.
54. Clarimon J, Asgeirsson H, Singleton A, Jakobsson F, Hjaltason H, et al. Torsin A haplotype predisposes to idiopathic dystonia. Ann Neurol
2005;57:765-7.
55. Hague S, Klaffke S, Clarimon J, Hemmer B, Singleton A, et al. Lack of association with TorsinA haplotype in German patients with
sporadic dystonia. Neurology 2006;66:951-2.
56. Sharma N, Franco RA, Kuster J, Mitchel AA, Fuchs T, et al. Genetic evidence for an association of the TOR1A locus with segmental/focal
dystonia. Mov Disord 2010;25:2183-7.
57. Lohmann K, Wilcox R, Winkler S, Ramirez A, Rakovic A, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the
TUBB4 gene. Ann Neurol 2013;73:537-45.
58. Peng Y, Crumley R, Ringman J. Spasmodic dysphonia in a patient with the A to G transition at nucleotide 8344 in mitochondrial DNA. Mov
Disord 2003;18:716-8.
59. Qi Y, Zheng Y, Li Z, Xiong L. Progress in genetic studies of Tourette’s syndrome. Brain Sci 2017;7:134.
60. Belloso J, Bache I, Guitart M, Caballin MR, Halgren C, et al. Disruption of the CNTNAP2 gene in a t(7;15) translocation family without
symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet 2007;15:711-3.
61. Sun N, Nasello C, Deng L, Wang N, Zhang Y, et al. The PNKD gene is associated with Tourette Disorder or Tic disorder in a multiplex
family. Mol Psychiatry 2017;23:1487-1495.
62. Hamilton A, Ferm U, Heemskerk A, Twiston-Davies R, Matheson KY, et al. Management of speech, language and communication
difficulties in Huntington’s disease. Neurodegener Dis Manag 2012;2:67-77.
63. Smith S. Approach to epigenetic analysis in language disorders. J Neurodev Disord 2011;3:356-64.
64. Valor L. Transcription, Epigenetics and Ameliorative Strategies in Huntington’s Disease: a Genome-Wide Perspective. Mol Neurobiol
2014;51:406-23.
65. Patel A, Frucht S. Isolated vocal tremor as a focal phenotype of essential tremor: a retrospective case review. J Clin Mov Disord 2015;2:2-4.
66. Sulica L, Louis E. Clinical characteristics of essential voice tremor: a study of 34 cases. Laryngoscope 2010;120:516-28.
67. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {190300}: {02/16/2016}.
Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019]
68. Frigerio-Domingues C, Drayna D. Genetic contributions to stuttering: the current evidence. Mol Genet Genomic Med 2017;5:95-102.
69. Kazemi N, Estiar M, Fazilaty H, Sakhinia E. Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene
2018;647:93-100.
70. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {607840}: {03/07/2018}.
Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019]
71. Raza MH, Gertz EM, Mundorff J, Lukong J, Kuster J, et al. Linkage analysis of a large African family segregating stuttering suggests
polygenic inheritance. Hum Genet 2013;132:385-96.
72. Suresh R, Ambrose N, Roe C, Pluzhnikov A, Wittke-Thompson JK, et al. New complexities in the genetics of stuttering: significant sex‐
specific linkage signals. Am J Hum Genet 2006;78:554-63.
73. Domingues CE, Olivera CM, Oliveira BV, Juste FS, Andrade CR, et al. A genetic linkage study in Brazil identifies a new locus for persistent
developmental stuttering on chromosome 10. Genet Mol Res 2014;13:2094-101.
74. Lan J, Song M, Pan C, Zhuang G, Wang Y, et al. Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han
Chinese. J Hum Genet 2009;54:457-60.
75. Reuter M, Riess A, Moog U, Briggs TA, Chandler KE, et al. FOXP2 variants in 14 individuals with developmental speech and language
disorders broaden the mutational and clinical spectrum. J Med Genet 2016;54:64-72.
76. Petrin A, Giacheti C, Maximino L, Abramides D, Zanchetta S, et al. Identification of a microdeletion at the 7q33-q35 disrupting the
CNTNAP2 gene in a Brazilian stuttering case. Am J Med Gen A 2010;152A:3164-72.
77. Dauer K, Irwin S, Schippits S. Becoming verbal and intelligible: a functional motor programming approach for children with developmental
verbal apraxia. Harcourt Publishers Ltd; 1996.