Page 100 - Read Online
P. 100
Page 10 of 12 Papadodima et al. J Transl Genet Genom 2019;3:7. I https://doi.org/10.20517/jtgg.2018.33
51. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. Quantitative Biology 2012.
52. Usuyama N, Shiraishi Y, Sato Y, Kume H, Homma Y, et al. HapMuC: somatic mutation calling using heterozygous germ line variants near
candidate mutations. Bioinformatics 2014;30:3302-9.
53. Sengupta S, Gulukota K, Zhu Y, Ober C, Naughton K, et al. Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing
data reveals somatic mosaicism in tumor and normal blood samples. Nucleic Acids Res 2016;44:e25.
54. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, et al. Integrating mapping-, assembly- and haplotype-based approaches for calling
variants in clinical sequencing applications. Nat Genet 2014;46:912-8.
55. Cantarel BL, Weaver D, McNeill N, Zhang J, Mackey AJ, et al. BAYSIC: a Bayesian method for combining sets of genome variants with
improved specificity and sensitivity. BMC Bioinformatics 2014;15:104.
56. Ding J, Bashashati A, Roth A, Oloumi A, Tse K, et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired
sequencing data. Bioinformatics 2012;28:167-75.
57. Spinella JF, Mehanna P, Vidal R, Saillour V, Cassart P, et al. SNooPer: a machine learning-based method for somatic variant identification
from low-pass next-generation sequencing. BMC Genomics 2016;17:912.
58. Fang LT, Afshar PT, Chhibber A, Mohiyuddin M, Fan Y, et al. An ensemble approach to accurately detect somatic mutations using
SomaticSeq. Genome Biol 2015;16:197.
59. Hsu YC, Hsiao YT, Kao TY, Chang JG, Shieh GS. Detection of somatic mutations in exome sequencing of tumor-only samples. Sci Rep
2017;7:15959.
60. Kalatskaya I, Trinh QM, Spears M, McPherson JD, Bartlett JMS, et al. ISOWN: accurate somatic mutation identification in the absence of
normal tissue controls. Genome Med 2017;9:59.
61. Muller E, Goardon N, Brault B, Rousselin A, Paimparay G, et al. OutLyzer: software for extracting low-allele-frequency tumor mutations
from sequencing background noise in clinical practice. Oncotarget 2016;7:79485-93.
62. Dunn T, Berry G, Emig-Agius D, Jiang Y, Lei S, et al. Pisces: an accurate and versatile variant caller for somatic and germline next-
generation sequencing data. Bioinformatics 2018; doi: 10.1093/bioinformatics/bty849.
63. Kockan C, Hach F, Sarrafi I, Bell RH, McConeghy B, et al. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in
circulating tumour DNA. Bioinformatics 2017;33:26-34.
64. Smith KS, Yadav VK, Pei S, Pollyea DA, Jordan CT, et al. SomVarIUS: somatic variant identification from unpaired tissue samples.
Bioinformatics 2016;32:808-13.
65. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, et al. Diverse mechanisms of somatic structural variations in human cancer
genomes. Cell 2013;153:919-29.
66. Xi R, Luquette J, Hadjipanayis A, Kim TM, Park PJ. BIC-seq: a fast algorithm for detection of copy number alterations based on high-
throughput sequencing data. Genome Biol 2010;11:O10.
67. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, et al. BreakDancer: an algorithm for high resolution mapping of genomic
structural variation. Nat Methods 2009;6:677-81.
68. Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, et al. Somatic rearrangements across cancer reveal classes of samples with
distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res 2013;23:228-35.
69. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA
sequencing. PLoS computational biology 2016;12:e1004873.
70. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, et al. Copy number variation detection and genotyping from exome sequence data.
Genome Res 2012;22:1525-32.
71. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, et al. DELLY: structural variant discovery by integrated paired-end and split-read
analysis. Bioinformatics 2012;28:i333-9.
72. Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex
rearrangements spawned by homology-independent mechanisms. Genome Res 2013;23:762-76.
73. Sindi S, Helman E, Bashir A, Raphael BJ. A geometric approach for classification and comparison of structural variants. Bioinformatics
2009;25:i222-30.
74. Sindi SS, Önal S, Peng LC, Wu HT, Raphael BJ. An integrative probabilistic model for identification of structural variation in sequencing
data. Genome Biol 2012;13:R22.
75. Escaramís G, Tornador C, Bassaganyas L, Rabionet R, Tubio JMC, et al. PeSV-Fisher: identification of somatic and non-somatic structural
variants using next generation sequencing data. PLoS One 2013;8:e63377.
76. Hormozdiari F, Hajirasouliha I, McPherson A, Eichler EE, Sahinalp SC. Simultaneous structural variation discovery among multiple paired-
end sequenced genomes. Genome Res 2011;21:2203-12.
77. Tang X, Baheti S, Shameer K, Thompson KJ, Wills Q, et al. The eSNV-detect: a computational system to identify expressed single
nucleotide variants from transcriptome sequencing data. Nucleic Acids Res 2014;42:e172.
78. Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 2013;93:641-51.
79. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009;458:719-24.
80. Kontogianni G, Piroti G, Maglogiannis I, Chatziioannou A, Papadodima O. Dissecting the mutational landscape of cutaneous melanoma: an
omic analysis based on patients from Greece. Cancers 2018;10:96.
81. Kaminker JS, Zhang Y, Watanabe C, Zhang Z. CanPredict: a computational tool for predicting cancer-associated missense mutations.
Nucleic Acids Res 2007;35:W595-8.
82. González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness
score, Condel. Am J Hum Genet 2011;88:440-9.