Page 35 - Read Online
P. 35

Przanowski et al. J Transl Genet Genom 2018;2:2  I  http://dx.doi.org/10.20517/jtgg.2017.03                                      Page 15 of 15

                   via a novel X-pairing region of the Xic. Science 2007;318:1632-6.
               65.   van Bemmel JG, Mira-Bontenbal H, Gribnau J. Cis- and trans-regulation in X inactivation. Chromosoma 2016;125:41-50.
               66.   Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, Barakat TS, Sheppard KA, Mickanin C, Porter JA, Vertegaal AC, van Dam H,
                   Gribnau J, Lu CX, ten Dijke P. RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for
                   degradation. Mol Cell 2012;46:650-61.
               67.   Figueroa DM, Darrow EM, Chadwick BP. Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression
                   coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat. Chromosom Res 2015;23:733-52.
               68.   Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA, Shendure J, Duan Z, Noble WS, Disteche CM. Bipartite structure
                   of the inactive mouse X chromosome. Genome Biol 2015;16:152.
               69.   Horakova AH, Moseley SC, Mclaughlin CR, Tremblay DC, Chadwick BP. The macrosatellite DXZ4 mediates CTCF-dependent long-
                   range intrachromosomal interactions on the human inactive X chromosome. Hum Mol Genet 2012;21:4367-77.
               70.   Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC, Sun Z, Huang SC, Sanborn AL, Machol I, Shamim M, Seberg AP,
                   Lander ES, Chadwick BP, Aiden EL. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.
                   Proc Natl Acad Sci U S A 2016;113:E4504-12.
               71.   Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, Chen CJ, Kaplan N, Chang HY, Heard E, Dekker J. Structural organization of
                   the inactive X chromosome in the mouse. Nature 2016;535:575-9.
               72.   Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H,
                   Thomas PD. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 2005;33:D284-8.
               73.   Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from Gene
                   Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 2017;45:D183-9.
               74.   Alvarez-Saavedra M, Sáez MA, Kang D, Zoghbi HY, Young JI. Cell-specific expression of wild-type MeCP2 in mouse models of Rett
                   syndrome yields insight about pathogenesis. Hum Mol Genet 2007;16:2315-25.
               75.   Garg SK, Lioy DT, Cheval H, McGann JC, Bissonnette JM, Murtha MJ, Foust KD, Kaspar BK, Bird A, Mandel G. Systemic delivery of
                   MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci 2013;33:13612-20.
               76.   Ure K, Lu H, Wang W, Ito-Ishida A, Wu Z, He LJ, Sztainberg Y, Chen W, Tang J, Zoghbi HY. Restoration of Mecp2 expression in
                   GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. Elife 2016;5:e14198.
   30   31   32   33   34   35   36   37   38   39   40