Page 232 - Read Online
P. 232

Page 10 of 11                         Zhang et al. J Cancer Metastasis Treat 2020;6:21  I  http://dx.doi.org/10.20517/2394-4722.2020.40

                   selective, quadruplex-binding inhibitor of MYC expression. ACS Chem Biol 2016;11:139-48.
               27.  Calabrese DR, Chen X, Leon EC, Gaikwad SM, Phyo Z, et al. Chemical and structural studies provide a mechanistic basis for recognition
                   of the MYC G-quadruplex. Nat Commun 2018;9:4229.
               28.  Grandori C, Kemp CJ. Personalized cancer models for target discovery and precision Medicine. Trends Cancer 2018;4:634-42.
               29.  Mock B, Wax J, Clynes R, Marcu KB, Potter M. The genetics of susceptibility to RIM-induced plasmacytomagenesis. Curr Top Microbiol
                   Immunol 1988:141:125-7.
               30.  Misund K, Keane N, Stein CK, Asmann YW, Day G, et al. MYC dysregulation in the progression of multiple myeloma. Leukemia
                   2020;34:322-6.
               31.  Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry
                   2016;55:1600-14.
               32.  Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer
                   new therapeutic opportunities. Expert Rev Anticancer Ther 2019;19:375-91.
               33.  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature
                   2001;409:860-921.
               34.  Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. The sequence of the human genome. Science 2001;291:1304-51.
               35.  Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, et al. Initial genome sequencing and analysis of multiple myeloma.
                   Nature 2011;471:467-72.
               36.  Schürch CM, Rasche L, Frauenfeld L, Weinhold N, Fend F. A review on tumor heterogeneity and evolution in multiple myeloma:
                   pathological, radiological, molecular genetics, and clinical integration. Virchows Arch 2020;476:337-51.
               37.  Rustad EH, Yellapantula V, Leongamornlert D, Bolli N, Ledergor G, et al. Timing the initiation of multiple myeloma. Nat Commun
                   2020;11:1917.
               38.  Maura F, Rustad EH, Boyle EM, Morgan GJ. Reconstructing the evolutionary history of multiple myeloma. Best Pract Res Clin Haematol
                   2020;33:101145.
               39.  Rasche L, Kortüm KM, Raab MS, Weinhold N. The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in
                   multiple myeloma. Int J Mol Sci 2019;20:1248.
               40.  Merz M, Jauch A, Hielscher T, Bochtler T, Schönland SO, et al. Prognostic significance of cytogenetic heterogeneity in patients with
                   newly diagnosed multiple myeloma. Blood Adv 2017;2:1-9.
               41.  Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and
                   asymptomatic myeloma. Nat Med 2018;24:1867-76.
               42.  Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, et al. Genomic landscape and chronological reconstruction of driver
                   events in multiple myeloma. Nat Commun 2019;10:3835.
               43.  Lonial S, Yellapantula VD, Liang W, Kurdoglu A, Aldrich J, et al. Interim analysis of the mmrf commpass trial: identification of novel
                   rearrangements potentially associated with disease initiation and progression. Blood 2014;124:722.
               44.  Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002;2:175-87.
               45.  Stewart AK, Bergsagel PL, Greipp PR, Dispenzieri A, Gertz MA, et al. A practical guide to defining high-risk myeloma for clinical trials,
                   patient counseling and choice of therapy. Leukemia 2007;21:529-34.
               46.  Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a
                   conditional mouse model of post-germinal center malignancies. Cancer Cell 2008;13:167-80.
               47.  Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, et al. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause
                   plasma cell neoplasms in mice. J Clin Invest 2004;113:1763-73.
               48.  Radl J, Croese JW, Zurcher C, Van den Enden-Vieveen MH, de Leeuw AM. Animal model of human disease. Multiple myeloma. Am J
                   Pathol 1988;132:593-7.
               49.  Tompkins VS, Rosean TR, Holman CJ, DeHoedt C, Olivier AK, et al. Adoptive B-cell transfer mouse model of human myeloma.
                   Leukemia 2016;30:962-6.
               50.  Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, et al. The use of murine models for studying mechanistic insights of
                   genomic instability in multiple myeloma. Front Genet 2019;10:740.
               51.  Rajagopalan A, Wen Z, Furumo Q, Ranheim E, Finn R, et al. Mice expressing MYC and NrasQ61R in germinal venter B vells fevelop
                   highly aggressive multiple myeloma. Blood 2018;132:1006.
               52.  Mitchell JS, Li N, Weinhold N, Forsti A, Ali M, et al. Genome-wide association study identifies multiple susceptibility loci for multiple
                   myeloma. Nat Commun 2016;7:12050.
               53.  Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O, et al. Inherited genetic susceptibility to multiple myeloma. Leukemia
                   2014;28:518-24.
               54.  Swaminathan B, Thorleifsson G, Jöud M, Ali M, Johnsson E, et al. Variants in ELL2 influencing immunoglobulin levels associate with
                   multiple myeloma. Nat Commun 2015;6:7213.
               55.  Chubb D, Weinhold N, Broderick P, Chen B, Johnson DC, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences
                   multiple myeloma risk. Nat Genet 2013;45:1221-5.
               56.  Weinhold N, Johnson DC, Chubb D, Chen B, Försti A, et al. The CCND1.c.870G>A polymorphism is a risk factor for t(11;14)(q13;q32)
                   multiple myeloma. Nat Genet 2013;45:522-5.
               57.  Broderick P, Chubb D, Johnson DC, Weinhold N, Försti A, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma
                   risk. Nat Genet 2011;44:58-61.
   227   228   229   230   231   232   233   234   235   236   237