Page 231 - Read Online
P. 231

Zhang et al. J Cancer Metastasis Treat 2020;6:21  I  http://dx.doi.org/10.20517/2394-4722.2020.40                        Page 9 of 11

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2020.


               REFERENCES
               1.   Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science 2015;349:1483-9.
               2.   Park S, Supek F, Lehner B. Systematic discovery of germline cancer predisposition genes through the identification of somatic second
                   hits. Nat Commun 2018;9:2601.
               3.   Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer
                   2017;17:692-704.
               4.   Mock BA, Krall MM, Dosik JK. Genetic mapping of tumor susceptibility genes involved in mouse plasmacytomagenesis. Proc Natl Acad
                   Sci USA 1993;90:9499-503.
               5.   Mock BA, Hartley J, Le Tissier P, Wax JS, Potter M. The plasmacytoma resistance gene, Pctr2, delays the onset of tumorigenesis and
                   resides in the telomeric region of chromosome 4. Blood 1997;90:4092-8.
               6.   Zhang S, Ramsay ES, Mock BA. Cdkn2a, the cyclin dependent kinase inhibitor encoding p16 INK4a  and p19 ARF  is a candidate for the
                   plasmacytoma susceptibility locus, Pctr1. Proc Natl Acad Sci USA 1998;95:2429-34.
               7.   Zhang S, Mock BA. The role of p16 INK4a  (Cdkn2a) in mouse plasma cell tumors. Curr Top Microbiol Immunol 1999;246:363-7.
               8.   Potter M, Mushinski EB, Wax JS, Hartley J, Mock BA. Identification of two genes on chromosome 4 determine resistance to
                   plasmacytoma induction in mice. Cancer Res 1994;54:969-75.
               9.   Mock BA, Zhang S, Ramsay ES, Bliskovski V, Zhang K, et al. Strategies for dissecting complex traits associated with cancer: lessons
                   from plasma cell tumors. AACR Education Book 2005;2005:273-6.
               10.  Krall M, Ruff N, Zimmerman K, Aggarwal A, Dosik J, et al. Isolation and mapping of four new DNA markers from mouse chromosome 4.
                   Mamm Genome 1992;3:653-5.
               11.  Bliskovsky V, Ramsay ES, Scott J, DuBois W, Shi W, et al. Frap, FKBP12 rapamycin-associated protein, is a candidate gene for the
                   plasmacytoma resistance locus Pctr2 and can act as a tumor suppressor gene. Proc Natl Acad Sci USA 2003;100:14982-7.
               12.  Zhang K, Kagan D, DuBois W, Robinson R, Bliskovsky V, et al. Mndal, a new interferon-inducible family member, is highly
                   polymorphic, suppresses cell growth, and may modify plasmacytoma susceptibility. Blood 2009;114:2952-60.
               13.  Janz S. Genetic and environmental cofactors of Myc translocations in plasma cell tumor development in mice. J Natl Cancer Inst Monogr
                   2008:37-40.
               14.  Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J Natl
                   Cancer Inst Monogr 2008:25-31.
               15.  Zhang SL, DuBois W, Ramsay ES, Bliskovski V, Morse HC 3rd, et al. Efficiency alleles of the Pctr1 modifier locus for plasmacytoma
                   susceptibility. Mol Cell Biol 2001;21:310-8.
               16.  Zhang S, Qian X, Redman C, Bliskovski V, Ramsay ES, et al. p16 INK4a gene promoter variation and differential binding of a repressor,
                   the ras-responsive zinc-finger transcription factor, RREB. Oncogene 2003;22:2285-95.
               17.  Zhang S, Shi W, Ramsay ES, Bliskovsky V, Eiden AM, et al. The transcription factor MZF1 differentially regulates murine Mtor promoter
                   variants linked to tumor susceptibility. J Biol Chem 2019;294:16756-64.
               18.  Boyle EM, Davies FE, Leleu X, Morgan GJ. Understanding the multiple biological aspects leading to myeloma. Haematologica
                   2014;99:605-12.
               19.  Simmons JK, Michalowski AM, Gamache BJ, DuBois W, Patel J, et al. Cooperative targets of combined mTOR/HDAC inhibition
                   promote MYC degradation. Mol Cancer Ther 2017;16:2008-21.
               20.  Simmons JK, Patel J, Michalowski A, Zhang S, Wei BR, et al. TORC1 and class I HDAC inhibitors synergize to suppress mature B cell
                   neoplasms. Mol Oncol 2014;8:261-72.
               21.  Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, et al. The molecular classification of multiple myeloma. Blood 2006;108:2020-8.
               22.  Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, et al. Molecular dissection of hyperdiploid multiple myeloma by gene
                   expression profiling. Cancer Res 2007;67:2982-9.
               23.  Tiedemann RE, Zhu YX, Schmidt J, Yin H, Shi CX, et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable
                   kinase targets, including a lymphoid-restricted kinase, GRK6. Blood 2010;115:1594-604.
               24.  Chng WJ, Gertz MA, Chung TH, Van Wier S, Keats JJ, et al. Correlation between array-comparative genomic hybridization-defined
                   genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma. Leukemia 2010;24:833-42.
               25.  Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, et al. Clinical and biological implications of MYC activation: a common
                   difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011;25:1026-35.
               26.  Felsenstein KM, Saunders LB, Simmons JK, Leon E, Calabrese DR, et al. Small molecule microarrays enable the identification of a
   226   227   228   229   230   231   232   233   234   235   236