Page 155 - Read Online
P. 155

Page 16 of 17                                     Li et al. J Cancer Metastasis Treat 2020;6:14  I  http://dx.doi.org/10.20517/2394-4722.2020.27

               74.  Peraldo Neia C, Cavalloni G, Balsamo A, Venesio T, Napoli F, et al. Screening for the FIG-ROS1 fusion in biliary tract carcinomas by
                   nested PCR. Genes Chromosomes Cancer 2014;53:1033-40.
               75.  Lee J, Lee SE, Kang SY, Do IG, Lee S, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 2013;119:1627-35.
               76.  Aisner DL, Nguyen TT, Paskulin DD, Le AT, Haney J, et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral
                   heterogeneity for molecular drivers. Mol Cancer Res 2014;12:111-8.
               77.  Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer
                   2013;13:772-87.
               78.  Uguen A, De Braekeleer M. ROS1 fusions in cancer: a review. Future Oncol 2016;12:1911-28.
               79.  Neel DS, Allegakoen DV, Olivas V, Mayekar MK, Hemmati G, et al. Differential subcellular localization regulates oncogenic signaling
                   by ROS1 kinase fusion proteins. Cancer Res 2019;79:546-56.
               80.  Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007;7:233-45.
               81.  He Y, Sheng W, Hu W, Lin J, Liu J, et al. Different types of ROS1 fusion partners yield comparable efficacy to Crizotinib. Oncol Res
                   2019;27:901-10.
               82.  Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, et al. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc
                   Natl Acad Sci U S A 2013;110:19519-24.
               83.  Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol 2016;27 Suppl 3:iii4-15.
               84.  Li G, Dai WR, Shao FC. Effect of ALK-inhibitors in the treatment of non-small cell lung cancer: a systematic review and meta-analysis.
                   Eur Rev Med Pharmacol Sci 2017;21:3496-503.
               85.  Schoffski P, Sufliarsky J, Gelderblom H, Blay JY, Strauss SJ, et al. Abstract CT045: Prospective precision medicine trial of crizotinib (C)
                   in patients (pts) with advanced, inoperable inflammatory myofibroblastic tumor (IMFT) with and without ALK alterations: EORTC phase
                   II study 90101 “CREATE”. Cancer Res 2018;78:CT045.
               86.  Porta R, Borea R, Coelho A, Khan S, Araujo A, et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs.
                   Crit Rev Oncol Hematol 2017;113:256-67.
               87.  Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation
                   sequencing. Clin Cancer Res 2016;22:259-67.
               88.  Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 2017;17:318-32.
               89.  Borad MJ, Gores GJ, Roberts LR. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr Opin
                   Gastroenterol 2015;31:264-8.
               90.  Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique
                   molecular subtype of cholangiocarcinoma. Hepatology 2014;59:1427-34.
               91.  Jain A, Kwong LN, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol
                   2016;17:58.
               92.  Sia D, Losic B, Moeini A, Cabellos L, Hao K, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF
                   mutations in intrahepatic cholangiocarcinoma. Nat Commun 2015;6:6087.
               93.  Parker BC, Engels M, Annala M, Zhang W. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid
                   tumours. J Pathol 2014;232:4-15.
               94.  Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR
                   inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7:252-63.
               95.  Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2019;16:105-22.
               96.  Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced
                   cholangiocarcinoma. J Clin Oncol 2018;36:276-82.
               97.  Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3
                   inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov 2018;8:812-21.
               98.  Javle M, Kelley R, Roychowdhury S, Weiss K, Abou-Alfa G, et al. LBA28Updated results from a phase II study of infigratinib (BGJ398),
                   a selective pan-FGFR kinase inhibitor, in patients with previously treated advanced cholangiocarcinoma containing FGFR2 fusions. Ann
                   Oncol 2018;29.
               99.  Hollebecque A, Borad M, Sahai V, Catenacci DVT, Murphy A, et al. Interim results of fight-202, a phase II, open-label, multicenter study
                   of INCB054828 in patients (pts) with previously treated advanced/metastatic or surgically unresectable cholangiocarcinoma (CCA) with/
                   without fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations. Ann Oncol 2018;29:viii258.
               100. Park JO, Feng YH, Chen YY, Su WC, Oh DY, et al. Updated results of a phase IIa study to evaluate the clinical efficacy and safety of
                   erdafitinib in Asian advanced cholangiocarcinoma (CCA) patients with FGFR alterations. J Clin Oncol 2019;37:4117.
               101. Meric-Bernstam F, Arkenau H, Tran B, Bahleda R, Kelley R, et al. Efficacy of TAS-120, an irreversible fibroblast growth factor receptor
                   (FGFR) inhibitor, in cholangiocarcinoma patients with FGFR pathway alterations who were previously treated with chemotherapy and
                   other FGFR inhibitors. Ann Oncol 2018;29:v100.
               102. Li G, Krook M, Roychowdhury S, Avogadri F, Ye Y, et al. Abstract 2206: anti-tumor activity of infigratinib, a potent and selective
                   inhibitor of FGFR1, FGFR2 and FGFR3, in FGFR fusion-positive cholangiocarcinoma and other solid tumors. Cancer Res 2019;79:2206.
               103. Nauseef JT, Villamar DM, Lebenthal J, Vlachostergios PJ, Tagawa ST. An evaluation of the efficacy and safety of erdafitinib for the
                   treatment of bladder cancer. Expert Opin Pharmacother 2020:1-8.
               104. Dizman N, Rosenberg JE, Hoffman-Censits JH, Quinn DI, Petrylak DP, et al. Infigratinib in upper tract urothelial carcinoma vs urothelial
                   carcinoma of the bladder and association with comprehensive genomic profiling/cell-free DNA results. J Clin Oncol 2019;37:4510.
   150   151   152   153   154   155   156   157   158   159   160