Page 154 - Read Online
P. 154

Li et al. J Cancer Metastasis Treat 2020;6:14  I  http://dx.doi.org/10.20517/2394-4722.2020.27                                 Page 15 of 17

               40.  Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell
                   lung cancer. Nature 2007;448:561-6.
               41.  Hillier K, Hughes A, Shamberger RC, Shusterman S, Perez-Atayde AR, et al. A novel ALK fusion in pediatric medullary thyroid
                   carcinoma. Thyroid 2019;29:1704-7.
               42.  Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, et al. Identification of new ALK and RET gene fusions from colorectal and lung
                   cancer biopsies. Nat Med 2012;18:382-4.
               43.  Debelenko LV, Raimondi SC, Daw N, Shivakumar BR, Huang D, et al. Renal cell carcinoma with novel VCL-ALK fusion: new
                   representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430-42.
               44.  Du XL, Hu H, Lin DC, Xia SH, Shen XM, et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell
                   carcinoma. J Mol Med (Berl) 2007;85:863-75.
               45.  Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat
                   Commun 2014;5:3116.
               46.  Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, et al. Identification of targetable FGFR gene fusions in diverse cancers.
                   Cancer Discov 2013;3:636-47.
               47.  Lamballe F, Klein R, Barbacid M. The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 1991;22:153-70.
               48.  Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, et al. Clinical significance of NTRK family gene expression in neuroblastomas.
                   Pediatr Blood Cancer 2012;59:226-32.
               49.  Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, et al. Oncogenes in solid human tumours. Nature 1982;300:539-42.
               50.  Lee SJ, Li GG, Kim ST, Hong ME, Jang J, et al. NTRK1 rearrangement in colorectal cancer patients: evidence for actionable target using
                   patient-derived tumor cell line. Oncotarget 2015;6:39028-35.
               51.  Haller F, Knopf J, Ackermann A, Bieg M, Kleinheinz K, et al. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a
                   subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol 2016;238:700-10.
               52.  Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive
                   lipofibromatosis-like neural tumors. Am J Surg Pathol 2016;40:1407-16.
               53.  Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-
                   brainstem high-grade glioma. Nat Genet 2014;46:444-50.
               54.  Shim HS, Kenudson M, Zheng Z, Liebers M, Cha YJ, et al. Unique genetic and survival characteristics of invasive mucinous
                   adenocarcinoma of the lung. J Thorac Oncol 2015;10:1156-62.
               55.  Sozzi G, Bongarzone I, Miozzo M, Cariani CT, Mondellini P, et al. Cytogenetic and molecular genetic characterization of papillary
                   thyroid carcinomas. Genes Chromosomes Cancer 1992;5:212-8.
               56.  Wei G, Patel R, Walsh C, Barrera M, Fagan P, et al. Entrectinib, a highly potent pan-Trk, ROS1, and ALK inhibitor, has broad-spectrum,
                   histology-agnostic anti-tumor activity in molecularly defined cancers. Eur J Cancer 2016;69:S33.
               57.  Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 2001;169:107-14.
               58.  Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin
                   Cancer Res 2009;15:5962-7.
               59.  Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5:25-34.
               60.  Jones DT, Hutter B, Jager N, Korshunov A, Kool M, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma.
                   Nat Genet 2013;45:927-32.
               61.  Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid
                   leukemia with t(12;15)(p13;q25). Blood 1999;93:1355-63.
               62.  Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic
                   leukemia. N Engl J Med 2014;371:1005-15.
               63.  Forghieri F, Morselli M, Potenza L, Maccaferri M, Pedrazzi L, et al. Chronic eosinophilic leukaemia with ETV6-NTRK3 fusion transcript
                   in an elderly patient affected with pancreatic carcinoma. Eur J Haematol 2011;86:352-5.
               64.  Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, et al. Analysis of NTRK Alterations in Pan-cancer adult and pediatric
                   malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol 2018; doi: 10.1200/PO.18.00183.
               65.  Weinstein IB, Joe A. Oncogene addiction. Cancer Res 2008;68:3077-80; discussion 80.
               66.  Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol 2019;30:viii16-22.
               67.  Li G, Kim ST, Kim KM, Lee J, Russo M, et al. Abstract A173: potent anti-tumor activity of entrectinib in patient-derived models
                   harboring oncogenic gene rearrangements of NTRKs. Mol Cancer Ther 2015;14:A173.
               68.  Stumpfova M, Janne PA. Zeroing in on ROS1 rearrangements in non-small cell lung cancer. Clin Cancer Res 2012;18:4222-4.
               69.  Davies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:4040-5.
               70.  Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J
                   Clin Oncol 2012;30:863-70.
               71.  Pan Y, Zhang Y, Li Y, Hu H, Wang L, et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of
                   common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 2014;84:121-6.
               72.  Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U
                   S A 1987;84:9270-4.
               73.  Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, et al. Rare but recurrent ROS1 fusions resulting from chromosome 6q22
                   microdeletions are targetable oncogenes in glioma. Clin Cancer Res 2018;24:6471-82.
   149   150   151   152   153   154   155   156   157   158   159