Page 634 - Read Online
P. 634

Page 22 of 24                       Peyvandi et al. J Cancer Metastasis Treat 2019;5:44  I  http://dx.doi.org/10.20517/2394-4722.2019.16

               189. Hosseini H, Obradovic MM, Hoffmann M, Harper KL, Sosa MS, et al. Early dissemination seeds metastasis in breast cancer. Nature
                   2016; doi: 10.1038/nature20785.
               190. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, et al. Colon cancer cells escape 5FU chemotherapy-induced cell death by
                   entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res 2014;20:837-46.
               191. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, et al. Characterization of rare, dormant, and therapy-resistant cells in
                   acute lymphoblastic leukemia. Cancer Cell 2016;30:849-62.
               192. Pal D, Heidenreich O, Vormoor J. Dormancy stems the tide of chemotherapy. Cancer Cell 2016;30:825-6.
               193. Wu FH, Mu L, Li XL, Hu YB, Liu H, et al. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer
                   enriched by cell cycle inducer combined chemotherapy. Oncotarget 2017;8:78466-79.
               194. Keeratichamroen S, Lirdprapamongkol K, Svasti J. Mechanism of ECM-induced dormancy and chemoresistance in A549 human lung
                   carcinoma cells. Oncol Rep 2018;39:1765-74.
               195. Nakamura T, Shinriki S, Jono H, Guo J, Ueda M, et al. Intrinsic TGF-beta2-triggered SDF-1-CXCR4 signaling axis is crucial for drug
                   resistance and a slow-cycling state in bone marrow-disseminated tumor cells. Oncotarget 2015;6:1008-19.
               196. Quayle LA, Ottewell PD, Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by
                   fluorescent dye retention. Clin Exp Metastasis 2018;35:831-46.
               197. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer.
                   Clin Cancer Res 2012;18:869-81.
               198. McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, et al. Roles of signaling pathways in drug resistance, cancer initiating
                   cells and cancer progression and metastasis. Adv Biol Regul 2015;57:75-101.
               199. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical
                   update. Nat Rev Clin Oncol 2015;12:445-64.
               200. Schoning JP, Monteiro M, Gu W. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors
                   HIF1alpha and HIF2alpha. Clin Exp Pharmacol Physiol 2017;44:153-61.
               201. Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol
                   2016;43:723-37.
               202. Kolenda J, Jensen SS, Aaberg-Jessen C, Christensen K, Andersen C, et al. Effects of hypoxia on expression of a panel of stem cell and
                   chemoresistance markers in glioblastoma-derived spheroids. J Neurooncol 2011;103:43-58.
               203. He M, Wu H, Jiang Q, Liu Y, Han L, et al. Hypoxia-inducible factor-2alpha directly promotes BCRP expression and mediates the
                   resistance of ovarian cancer stem cells to adriamycin. Mol Oncol 2019;13:403-21.
               204. Maugeri-Sacca M, Vigneri P, De Maria R. Cancer stem cells and chemosensitivity. Clin Cancer Res 2011;17:4942-7.
               205. Crowder SW, Balikov DA, Hwang YS, Sung HJ. Cancer Stem Cells under Hypoxia as a Chemoresistance Factor in Breast and Brain.
                   Curr Pathobiol Rep 2014;2:33-40.
               206. Yan Y, Liu F, Han L, Zhao L, Chen J, et al. HIF-2alpha promotes conversion to a stem cell phenotype and induces chemoresistance in
                   breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res 2018;37:256.
               207. Uribe D, Torres A, Rocha JD, Niechi I, Oyarzun C, et al. Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic
                   microenvironment and adenosine signaling. Mol Aspects Med 2017;55:140-51.
               208. Qin J, Liu Y, Lu Y, Liu M, Li M, et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian
                   cancer cells by upregulating SIRT1 expression. Sci Rep 2017;7:10592.
               209. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1.
                   Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015;159:166-77.
               210. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016;4:59.
               211.  Dushyanthen S, Beavis PA, Savas P, Teo ZL, Zhou C, et al. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med
                   2015;13:202.
               212. de Melo Gagliato D, Cortes J, Curigliano G, Loi S, Denkert C, et al. Tumor-infiltrating lymphocytes in Breast Cancer and implications for
                   clinical practice. Biochim Biophys Acta Rev Cancer 2017;1868:527-37.
               213. Kroemer G, Senovilla L, Galluzzi L, André F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med
                   2015;21:1128-38.
               214. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer
                   Agents. Cancer Cell 2015;28:690-714.
               215. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and
                   predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014;25:1544-50.
               216. Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, et al. Tertiary lymphoid structures: prognostic significance and relationship with tumour-
                   infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 2016;69:422-30.
               217. Wang K, Xu J, Zhang T, Xue D. Tumor-infiltrating lymphocytes in breast cancer predict the response to chemotherapy and survival
                   outcome: a meta-analysis. Oncotarget 2016;7:44288-98.
               218. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast
                   cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014;32:2959-66.
               219. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast
                   cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015;26:259-71.
               220. Forero A, Li Y, Chen D, Grizzle WE, Updike KL, et al. Expression of the MHC class II pathway in triple-negative breast cancer tumor
                   cells is associated with a good prognosis and infiltrating lymphocytes. Cancer Immunol Res 2016;4:390-9.
               221. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, et al. Pathologic complete response to neoadjuvant chemotherapy of breast
                   carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 2008;14:2413-20.
   629   630   631   632   633   634   635   636   637   638   639