Page 636 - Read Online
P. 636

Page 24 of 24                       Peyvandi et al. J Cancer Metastasis Treat 2019;5:44  I  http://dx.doi.org/10.20517/2394-4722.2019.16

                   with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437-44.
               254. Retsky M, Rogers R, Demicheli R, Hrushesky WJ, Gukas I, et al. NSAID analgesic ketorolac used perioperatively may suppress early
                   breast cancer relapse: particular relevance to triple negative subgroup. Breast Cancer Res Treat 2012;134:881-8.
               255. Desmedt C, Demicheli R, Fornili M, Bachir I, Duca M, et al. Potential Benefit of Intra-operative Administration of Ketorolac on Breast
                   Cancer Recurrence According to the Patient's Body Mass Index. J Natl Cancer Inst 2018;110:1115-22.
               256. Recasens A, Munoz L. Targeting cancer cell dormancy. Trends Pharmacol Sci 2019;40:128-41.
               257. Li J, Jiang E, Wang X, Shangguan AJ, Zhang L, et al. Dormant cells: the original cause of tumor recurrence and metastasis. Cell Biochem
                   Biophys 2015;72:317-20.
               258. Cuzick J, Otto F, Baron JA, Brown PH, Burn J, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an
                   international consensus statement. Lancet Oncol 2009;10:501-7.
               259. Stagg J, Andre F, Loi S. Immunomodulation via chemotherapy and targeted therapy: a new paradigm in breast cancer therapy? Breast
                   Care (Basel) 2012;7:267-72.
               260. Miolo G, Muraro E, Martorelli D, Lombardi D, Scalone S, et al. Anthracycline-free neoadjuvant therapy induces pathological complete
                   responses by exploiting immune proficiency in HER2+ breast cancer patients. BMC Cancer 2014;14:954.
               261. Wang BX, Rahbar R, Fish EN. Interferon: current status and future prospects in cancer therapy. J Interferon Cytokine Res 2011;31:545-
                   52.
               262. Brockwell NK, Parker BS. Tumor inherent interferons: impact on immune reactivity and immunotherapy. Cytokine 2018; doi: 10.1016/
                   j.cyto.2018.04.006.
               263. Ramos MC, Mardegan MC, Tirone NR, Michelin MA, Murta EF. The clinical use of type 1 interferon in gynecology. Eur J Gynaecol
                   Oncol 2010;31:145-50.
               264. Corrales L, Gajewski TF. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin
                   Cancer Res 2015;21:4774-9.
               265. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy:
                   mechanism, combinations, and clinical outcome. Front Pharmacol 2017;8:561.
               266. Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res
                   2018;10:6823-33.
               267. Schutz F, Stefanovic S, Mayer L, von Au A, Domschke C, et al. PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 2017;40:294-7.
               268. Bianchini G, Pusztai L, Pienkowski T, Im YH, Bianchi GV, et al. Immune modulation of pathologic complete response after neoadjuvant
                   HER2-directed therapies in the NeoSphere trial. Ann Oncol 2015;26:2429-36.
               269. Sanchez K, Page D, McArthur HL. Immunotherapy in breast cancer: an overview of modern checkpoint blockade strategies and vaccines.
                   Curr Probl Cancer 2016;40:151-62.
               270. Brockwell NK, Owen KL, Zanker D, Spurling A, Rautela J, et al. Neoadjuvant interferons: critical for effective PD-1-based
                   immunotherapy in TNBC. Cancer Immunol Res 2017;5:871-84.
               271. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov
                   2016;6:479-91.
               272. Spiliotaki M, Mavroudis D, Kapranou K, Markomanolaki H, Kallergi G, et al. Evaluation of proliferation and apoptosis markers in
                   circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res 2014;16:485.
               273. Vishnoi M, Peddibhotla S, Yin W, A TS, George GC, et al. The isolation and characterization of CTC subsets related to breast cancer
                   dormancy. Sci Rep 2015;5:17533.
               274. Shaw JA, Page K, Blighe K, Hava N, Guttery D, et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy.
                   Genome Res 2012;22:220-31.
               275. Perez-Rivas LG, Jerez JM, Fernandez-De Sousa CE, de Luque V, Quero C, et al. Serum protein levels following surgery in breast cancer
                   patients: a protein microarray approach. Int J Oncol 2012;41:2200-6.
   631   632   633   634   635   636   637   638   639   640   641