Page 39 - Read Online
P. 39

Page 12 of 12           David. J Cancer Metastasis Treat 2022;8:32  https://dx.doi.org/10.20517/2394-4722.2022.71

               50.      Daemen A, Peterson D, Sahu N, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct
                   sensitivities to metabolic inhibitors. Proc Natl Acad Sci USA 2015;112:E4410-7.  DOI  PubMed  PMC
               51.      Kalisz M, Bernardo E, Beucher A, et al. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress
                   pancreatic cancer. EMBO J 2020;39:e102808.  DOI  PubMed  PMC
               52.      Abel EV, Goto M, Magnuson B, et al. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. Elife
                   2018;7:e33947.  DOI  PubMed  PMC
               53.      Diaferia GR, Balestrieri C, Prosperini E, et al. Dissection of transcriptional and cis-regulatory control of differentiation in human
                   pancreatic cancer. EMBO J 2016;35:595-617.  DOI  PubMed  PMC
               54.      Diaferia GR, Natoli G. Transcription factors as drivers of distinct pancreatic ductal adenocarcinoma (PDAC) programmes: a role for
                   HNF4A. Gut 2021;70:816-7.  DOI  PubMed
               55.      He P, Yang JW, Yang VW, Bialkowska AB. Krüppel-like factor 5, increased in pancreatic ductal adenocarcinoma, promotes
                   proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. Gastroenterology
                   2018;154:1494-1508.e13.  DOI  PubMed  PMC
               56.      Alfarano G, Audano M, Di Chiaro P, et al. Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade
                   pancreatic cancer cells. Gut ;2022:gutjnl-2021.  DOI  PubMed
               57.      Somerville TDD, Xu Y, Wu XS, et al. ZBED2 is an antagonist of interferon regulatory factor 1 and modifies cell identity in pancreatic
                   cancer. Proc Natl Acad Sci USA 2020;117:11471-82.  DOI  PubMed  PMC
               58.      Tonelli C, Yordanov GN, Hao Y, et al. SPDEF promotes the classical subtype of pancreatic ductal adenocarcinoma. bioRxiv
                   2022:2022.03.18.484951.  DOI
               59.      Steiner S, Seleznik GM, Reding T, et al. De novo expression of gastrokines in pancreatic precursor lesions impede the development of
                   pancreatic cancer. Oncogene 2022;41:1507-17.  DOI  PubMed  PMC
               60.      Ganguly K, Krishn SR, Rachagani S, et al. Secretory Mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated
                   pancreatic cancer cell stemness. Cancer Res 2021;81:91-102.  DOI  PubMed  PMC
               61.      Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer
                   2014;14:581-97.  DOI  PubMed
               62.      Bujalka H, Koenning M, Jackson S, et al. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to
                   directly activate myelin genes. PLoS Biol 2013;11:e1001625.  DOI  PubMed  PMC
               63.      Li Z, Park Y, Marcotte EM. A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription
                   factor, the myelin regulatory factor MYRF. PLoS Biol 2013;11:e1001624.  DOI  PubMed  PMC
               64.      Milan M, Balestrieri C, Alfarano G, et al. Pancreatic Cancer Cells require the Transcription Factor MYRF to maintain ER homeostasis.
                   Dev Cell 2020;55:398-412.e7.  DOI  PubMed
               65.      Gregorieff A, Stange DE, Kujala P, et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in
                   the intestinal epithelium. Gastroenterology 2009;137:1333-45.e1.  DOI  PubMed
               66.      Chen G, Korfhagen TR, Xu Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of
                   genes associated with mucus production. J Clin Invest 2009;119:2914-24.  DOI  PubMed  PMC
               67.      Higa A, Mulot A, Delom F, et al. Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2)
                   in the control of endoplasmic reticulum homeostasis. J Biol Chem 2011;286:44855-68.  DOI  PubMed  PMC
               68.      Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel
                   bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998;12:1812-24.  DOI  PubMed  PMC
               69.      Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress
                   responses. EMBO J 1998;17:5708-17.  DOI  PubMed  PMC
               70.      David CJ, Huang YH, Chen M, et al. TGF-β tumor suppression through a lethal EMT. Cell 2016;164:1015-30.  DOI  PubMed  PMC
               71.      Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal
                   morphogenesis. Nature 1999;398:708-13.  DOI  PubMed
               72.      Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci 2018;75:1179-90.  DOI
                   PubMed  PMC
               73.      Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression
                   of p73-dependent apoptosis. Cancer Cell 2006;9:45-56.  DOI  PubMed
               74.      Patturajan M, Nomoto S, Sommer M, et al. ΔNp63 induces β-catenin nuclear accumulation and signaling. Cancer Cell 2002;1:369-79.
                   DOI  PubMed
               75.      Jiang YY, Jiang Y, Li CQ, et al. TP63, SOX2, and KLF5 establish a core regulatory circuitry that controls epigenetic and transcription
                   patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology 2020;159:1311-1327.e19.  DOI  PubMed
               76.      Somerville TDD, Xu Y, Miyabayashi K, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic
                   ductal adenocarcinoma. Cell Rep 2018;25:1741-1755.e7.  DOI  PubMed  PMC
               77.      Hamdan FH, Johnsen SA. DeltaNp63-dependent super enhancers define molecular identity in pancreatic cancer by an interconnected
                   transcription factor network. Proc Natl Acad Sci USA 2018;115:E12343-52.  DOI  PubMed  PMC
               78.      Adams CR, Htwe HH, Marsh T, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer.
                   Elife 2019;8:e45313.  DOI  PubMed  PMC
   34   35   36   37   38   39   40   41   42   43   44