Page 39 - Read Online
P. 39
Page 12 of 12 David. J Cancer Metastasis Treat 2022;8:32 https://dx.doi.org/10.20517/2394-4722.2022.71
50. Daemen A, Peterson D, Sahu N, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct
sensitivities to metabolic inhibitors. Proc Natl Acad Sci USA 2015;112:E4410-7. DOI PubMed PMC
51. Kalisz M, Bernardo E, Beucher A, et al. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress
pancreatic cancer. EMBO J 2020;39:e102808. DOI PubMed PMC
52. Abel EV, Goto M, Magnuson B, et al. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. Elife
2018;7:e33947. DOI PubMed PMC
53. Diaferia GR, Balestrieri C, Prosperini E, et al. Dissection of transcriptional and cis-regulatory control of differentiation in human
pancreatic cancer. EMBO J 2016;35:595-617. DOI PubMed PMC
54. Diaferia GR, Natoli G. Transcription factors as drivers of distinct pancreatic ductal adenocarcinoma (PDAC) programmes: a role for
HNF4A. Gut 2021;70:816-7. DOI PubMed
55. He P, Yang JW, Yang VW, Bialkowska AB. Krüppel-like factor 5, increased in pancreatic ductal adenocarcinoma, promotes
proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. Gastroenterology
2018;154:1494-1508.e13. DOI PubMed PMC
56. Alfarano G, Audano M, Di Chiaro P, et al. Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade
pancreatic cancer cells. Gut ;2022:gutjnl-2021. DOI PubMed
57. Somerville TDD, Xu Y, Wu XS, et al. ZBED2 is an antagonist of interferon regulatory factor 1 and modifies cell identity in pancreatic
cancer. Proc Natl Acad Sci USA 2020;117:11471-82. DOI PubMed PMC
58. Tonelli C, Yordanov GN, Hao Y, et al. SPDEF promotes the classical subtype of pancreatic ductal adenocarcinoma. bioRxiv
2022:2022.03.18.484951. DOI
59. Steiner S, Seleznik GM, Reding T, et al. De novo expression of gastrokines in pancreatic precursor lesions impede the development of
pancreatic cancer. Oncogene 2022;41:1507-17. DOI PubMed PMC
60. Ganguly K, Krishn SR, Rachagani S, et al. Secretory Mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated
pancreatic cancer cell stemness. Cancer Res 2021;81:91-102. DOI PubMed PMC
61. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer
2014;14:581-97. DOI PubMed
62. Bujalka H, Koenning M, Jackson S, et al. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to
directly activate myelin genes. PLoS Biol 2013;11:e1001625. DOI PubMed PMC
63. Li Z, Park Y, Marcotte EM. A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription
factor, the myelin regulatory factor MYRF. PLoS Biol 2013;11:e1001624. DOI PubMed PMC
64. Milan M, Balestrieri C, Alfarano G, et al. Pancreatic Cancer Cells require the Transcription Factor MYRF to maintain ER homeostasis.
Dev Cell 2020;55:398-412.e7. DOI PubMed
65. Gregorieff A, Stange DE, Kujala P, et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in
the intestinal epithelium. Gastroenterology 2009;137:1333-45.e1. DOI PubMed
66. Chen G, Korfhagen TR, Xu Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of
genes associated with mucus production. J Clin Invest 2009;119:2914-24. DOI PubMed PMC
67. Higa A, Mulot A, Delom F, et al. Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2)
in the control of endoplasmic reticulum homeostasis. J Biol Chem 2011;286:44855-68. DOI PubMed PMC
68. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel
bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 1998;12:1812-24. DOI PubMed PMC
69. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress
responses. EMBO J 1998;17:5708-17. DOI PubMed PMC
70. David CJ, Huang YH, Chen M, et al. TGF-β tumor suppression through a lethal EMT. Cell 2016;164:1015-30. DOI PubMed PMC
71. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal
morphogenesis. Nature 1999;398:708-13. DOI PubMed
72. Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci 2018;75:1179-90. DOI
PubMed PMC
73. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression
of p73-dependent apoptosis. Cancer Cell 2006;9:45-56. DOI PubMed
74. Patturajan M, Nomoto S, Sommer M, et al. ΔNp63 induces β-catenin nuclear accumulation and signaling. Cancer Cell 2002;1:369-79.
DOI PubMed
75. Jiang YY, Jiang Y, Li CQ, et al. TP63, SOX2, and KLF5 establish a core regulatory circuitry that controls epigenetic and transcription
patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology 2020;159:1311-1327.e19. DOI PubMed
76. Somerville TDD, Xu Y, Miyabayashi K, et al. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic
ductal adenocarcinoma. Cell Rep 2018;25:1741-1755.e7. DOI PubMed PMC
77. Hamdan FH, Johnsen SA. DeltaNp63-dependent super enhancers define molecular identity in pancreatic cancer by an interconnected
transcription factor network. Proc Natl Acad Sci USA 2018;115:E12343-52. DOI PubMed PMC
78. Adams CR, Htwe HH, Marsh T, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer.
Elife 2019;8:e45313. DOI PubMed PMC