Page 38 - Read Online
P. 38
David. J Cancer Metastasis Treat 2022;8:32 https://dx.doi.org/10.20517/2394-4722.2022.71 Page 11 of 12
21. Puleo F, Nicolle R, Blum Y, et al. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features.
Gastroenterology 2018;155:1999-2013.e3. DOI PubMed
22. Maurer C, Holmstrom SR, He J, et al. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes.
Gut 2019;68:1034-43. DOI PubMed PMC
23. Chan-Seng-Yue M, Kim JC, Wilson GW, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during
tumor evolution. Nat Genet 2020;52:231-40. DOI
24. Raghavan S, Winter PS, Navia AW, et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell
2021;184:6119-6137.e26. DOI PubMed PMC
25. O’Kane GM, Grünwald BT, Jang GH, et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic
cancer. Clin Cancer Res 2020;26:4901-10. DOI PubMed
26. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal
adenocarcinoma. Genes Dev 2003;17:3112-26. DOI PubMed PMC
27. Mueller S, Engleitner T, Maresch R, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature
2018;554:62-8. DOI PubMed PMC
28. Lee AYL, Dubois CL, Sarai K, et al. Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma.
Gut 2019;68:487-98. DOI PubMed
29. Flowers BM, Xu H, Mulligan AS, et al. Cell of origin influences pancreatic cancer subtype. Cancer Discov 2021;11:660-77. DOI
PubMed PMC
30. Martens S, Coolens K, Van Bulck M, et al. Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human
pancreatic ducts with implications in disease. Gut 2021:gutjnl-2020. DOI PubMed
31. Krieger TG, Le Blanc S, Jabs J, et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a
conserved developmental hierarchy. Nat Commun 2021;12:5826. DOI PubMed PMC
32. Miyabayashi K, Baker LA, Deschênes A, et al. Intraductal transplantation models of human pancreatic ductal adenocarcinoma reveal
progressive transition of molecular subtypes. Cancer Discov 2020;10:1566-89. DOI PubMed PMC
+
33. Candido JB, Morton JP, Bailey P, et al. CSF1R macrophages sustain pancreatic tumor growth through T Cell suppression and
maintenance of key gene programs that define the squamous subtype. Cell Rep 2018;23:1448-60. DOI PubMed PMC
34. Tu M, Klein L, Espinet E, et al. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer
reprogramming in pancreatic cancer. Nat Cancer 2021;2:1185-203. DOI PubMed
35. Collins MA, Brisset JC, Zhang Y, et al. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLoS One
2012;7:e49707. DOI PubMed PMC
36. Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose
metabolism. Cell 2012;149:656-70. DOI PubMed PMC
37. Martinelli P, Cañamero M, del Pozo N, Madriles F, Zapata A, Real FX. Gata6 is required for complete acinar differentiation and
maintenance of the exocrine pancreas in adult mice. Gut 2013;62:1481-8. DOI PubMed
38. Andricovich J, Perkail S, Kai Y, Casasanta N, Peng W, Tzatsos A. Loss of KDM6A activates super-enhancers to induce gender-
specific squamous-like pancreatic cancer and confers sensitivity to bet inhibitors. Cancer Cell 2018;33:512-526.e8. DOI PubMed
PMC
39. Fu B, Luo M, Lakkur S, Lucito R, Iacobuzio-Donahue CA. Frequent genomic copy number gain and overexpression of GATA-6 in
pancreatic carcinoma. Cancer Biol Ther 2008;7:1593-601. DOI PubMed
40. Kwei KA, Bashyam MD, Kao J, et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary
cancer. PLoS Genet 2008;4:e1000081. DOI PubMed PMC
41. Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 2006;6:593-602.
DOI PubMed
42. Aung KL, Fischer SE, Denroche RE, et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the
COMPASS trial. Clin Cancer Res 2018;24:1344-54. DOI PubMed PMC
43. Martinelli P, Carrillo-de Santa Pau E, Cox T, et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to
adjuvant chemotherapy in pancreatic cancer. Gut 2017;66:1665-76. DOI PubMed PMC
44. Brunton H, Caligiuri G, Cunningham R, et al. HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic
cancer. Cell Rep 2020;31:107625. DOI PubMed
45. Kloesch B, Ionasz V, Paliwal S, et al. A GATA6-centred gene regulatory network involving HNFs and ΔNp63 controls plasticity and
immune escape in pancreatic cancer. Gut 2022;71:766-77. DOI PubMed
46. Allen HL, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet
2011;44:20-2. DOI PubMed PMC
47. Shi ZD, Lee K, Yang D, et al. Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in
human pancreatic development. Cell Stem Cell 2017;20:675-688.e6. DOI PubMed PMC
48. Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest
2012;122:3504-15. DOI PubMed PMC
49. Camolotto SA, Belova VK, Torre-Healy L, et al. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular
subtype by HNF4α and SIX1/4. Gut 2021;70:900-14. DOI PubMed PMC