Page 37 - Read Online
P. 37
Page 10 of 12 David. J Cancer Metastasis Treat 2022;8:32 https://dx.doi.org/10.20517/2394-4722.2022.71
Availability of data and materials
Not applicable.
Financial support and sponsorship
None.
Conflicts of interest
The author declares that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2022.
REFERENCES
1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020;395:2008-20. DOI PubMed
2. Ryan DP, Hong TS, Bardeesy N. Pancreatic Adenocarcinoma. N Engl J Med 2014;371:2139-41. DOI
3. Cornish TC, Hruban RH. Pancreatic intraepithelial neoplasia. Surg Pathol Clin 2011;4:523-35. DOI PubMed
4. Hayashi A, Hong J, Iacobuzio-Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021;18:469-81.
DOI PubMed
5. Kopp JL, von Figura G, Mayes E, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism
for initiation of pancreatic ductal adenocarcinoma. Cancer Cell 2012;22:737-50. DOI PubMed PMC
6. Guerra C, Schuhmacher AJ, Cañamero M, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by
K-Ras oncogenes in adult mice. Cancer Cell 2007;11:291-302. DOI PubMed
7. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer
2017;17:594-604. DOI PubMed PMC
8. Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017;14:296-304.
DOI PubMed PMC
9. Morris JP 4th, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic
cancer precursor lesions in mice. J Clin Invest 2010;120:508-20. DOI PubMed PMC
10. Li Y, He Y, Peng J, et al. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor
cells to initiate pancreatic cancer. Nat Cancer 2021;2:49-65. DOI PubMed
11. Gidekel Friedlander SY, Chu GC, Snyder EL, et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras.
Cancer Cell 2009;16:379-89. DOI PubMed PMC
12. Bailey JM, Hendley AM, Lafaro KJ, et al. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic
ductal cells. Oncogene 2016;35:4282-8. DOI PubMed
13. Ferreira RMM, Sancho R, Messal HA, et al. Duct- and acinar-derived pancreatic ductal adenocarcinomas show distinct tumor
progression and marker expression. Cell Rep 2017;21:966-78. DOI PubMed PMC
14. Morris JP 4th, Hebrok M. It’s a free for all-insulin-positive cells join the group of potential progenitors for pancreatic ductal
adenocarcinoma. Cancer Cell 2009;16:359-61. DOI PubMed
15. Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Nat Med 2011;17:500-3. DOI PubMed PMC
16. Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic
ductal adenocarcinoma. Nat Genet 2015;47:1168-78. DOI PubMed PMC
17. Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531:47-52.
DOI PubMed
18. Luchini C, Capelli P, Scarpa A. Pancreatic ductal adenocarcinoma and its variants. Surg Pathol Clin 2016;9:547-60. DOI PubMed
19. Niger M, Prisciandaro M, Antista M, et al. One size does not fit all for pancreatic cancers: A review on rare histologies and therapeutic
approaches. World J Gastrointest Oncol 2020;12:833-49. DOI
20. Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu., Cancer Genome Atlas Research Network.
Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017;32:185-203.e13. DOI