Page 17 - Read Online
P. 17
Gastrointest Oncol 2016;7 Suppl 1:S1-10. 75. Kawasaki BT, Farrar WL. Cancer Stem Cells, CD200 and
58. Deng Z, Wu Y, Ma W, Zhang S, Zhang YQ. Adoptive T-cell therapy Immunoevasion. Trends Immunol 2008;29:464-8.
of prostate cancer targeting the cancer stem cell antigen EpCAM. 76. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL. Co-
BMC Immunol 2015;16:1. expression of the toleragenic glycoprotein, CD200, with markers for
59. Zhu X, Prasad S, Gaedicke S, Hettich M, Firat E, Niedermann cancer stem cells. Biochem Biophys Res Commun 2007;364:778-82.
G. Patient-derived glioblastoma stem cells are killed by CD133- 77. Jung YS, Vermeer PD, Vermeer DW, Lee SJ, Goh AR, Ahn HJ, Lee
specific CAR T cells but induce the T cell aging marker CD57. JH. CD200: association with cancer stem cell features and response
Oncotarget 2015;6:171-84. to chemoradiation in head and neck squamous cell carcinoma. Head
60. Schmidt P, Kopecky C, Hombach A, Zigrino P, Mauch C, Abken H. Neck 2015;37:327-35.
Eradication of melanomas by targeted elimination of a minor subset 78. McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter
of tumor cells. Proc Natl Acad Sci U S A 2011;108:2474-9. KN, Mockridge CI, Ravey EP, Qin F, Bowdish KS. Antibodies
61. Beard RE, Zheng Z, Lagisetty KH, Burns WR, Tran E, Hewitt selected from combinatorial libraries block a tumor antigen that
SM, Abate-Daga D, Rosati SF, Fine HA, Ferrone S, Rosenberg plays a key role in immunomodulation. Proc Natl Acad Sci U S A
SA, Morgan RA. Multiple chimeric antigen receptors successfully 2006;103:1041-6.
target chondroitin sulfate proteoglycan 4 in several different cancer 79. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J. Evidence of a role for
histologies and cancer stem cells. J Immunother Cancer 2014;2:25. CD200 in regulation of immune rejection of leukaemic tumour cells
62. Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap in C57BL/6 mice. Clin Exp Immunol 2001;126:220-9.
EA, Feldman SA, Chinnasamy N, Kuan CT, Song H, Zhang W, Fine 80. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A.
HA, Rosenberg SA. Recognition of glioma stem cells by genetically Immune modulation by melanoma and ovarian tumor cells through
modified T cells targeting EGFRvIII and development of adoptive expression of the immunosuppressive molecule CD200. Cancer
cell therapy for glioma. Hum Gene Ther 2012;23:1043-53. Immunol Immunother 2008;57:987-96.
63. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, 81. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by
Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L. cytokine networks: attacking cancer’s inflammatory roots. Clin
Tumor-associated B7-H1 promotes T-cell apoptosis: A potential Cancer Res 2011;17:6125-9.
mechanism of immune evasion. Nat Med 2002;8:793-800. 82. Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer
64. Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, stem cells: role of the microenvironment and therapeutic targeting.
Gregson BP, June CH, Linsley PS. Modulation of TCR-induced Biochem Pharmacol 2013;85:612-22.
transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 83. Charles N, Holland EC. The perivascular niche microenvironment
receptors. Proc Natl Acad Sci U S A 2002;99:11790-5. in brain tumor progression. Cell Cycle 2010;9:3012-21.
65. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive 84. Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench
strategies that are mediated by tumor cells. Annu Rev Immunol to bedside. Med Microbiol Immunol 2006;195:173-83.
2007;25:267-96. 85. Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-
66. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, interleukin-6 monoclonal antibody therapy for cancer: a review of the
Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ rationale and clinical evidence. Clin Cancer Res 2003;9:4653-65.
regulatory T cell function. Science 2008;322:271-5. 86. Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway
67. Tarhini AA, Iqbal F. CTLA-4 blockade: therapeutic potential in in targeted therapy for cancer. Cancer Treat Rev 2012;38:904-10.
cancer treatments. Onco Targets Ther 2010;3:15-25. 87. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M,
68. Hu Y, Fu L. Targeting cancer stem cells: a new therapy to cure Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL,
cancer patients. Am J Cancer Res 2012;2:340-56. Dontu G, Wicha MS. CXCR1 blockade selectively targets human
69. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, breast cancer stem cells in vitro and in xenografts. J Clin Invest
Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, 2010;120:485-97.
Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, 88. Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J,
Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB,
I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Brown PH. Growth of triple-negative breast cancer cells relies upon
Hoos A, Urba WJ. Improved survival with ipilimumab in patients coordinate autocrine expression of the proinflammatory cytokines
with metastatic melanoma. N Engl J Med 2010;363:711-23. IL-6 and IL-8. Cancer Res 2013;73:3470-80.
70. Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: 89. Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang
the first in an emerging class of immunomodulatory antibodies for B. Hypoxia inducible factor pathway inhibitors as anticancer
cancer treatment. J Clin Oncol 2008;26:5275-83. therapeutics. Future Med Chem 2013;5:553-72.
71. Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 antibodies 90. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR,
in clinical trials. Expert Opin Biol Ther 2007;7:1245-56. Gerstner E, Eichler AF, Drappatz J, Hochberg FH, Benner T, Louis
72. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, DN, Cohen KS, Chea H, Exarhopoulos A, Loeffler JS, Moses MA,
Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L. Blockade Ivy P, Sorensen AG, Wen PY, Jain RK. Phase II study of cediranib,
of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer an oral pan-vascular endothelial growth factor receptor tyrosine
therapeutic immunity. Cancer Res 2005;65:1089-96. kinase inhibitor, in patients with recurrent glioblastoma. J Clin
73. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and Oncol 2010;28:2817-23.
SHP-2 associate with immunoreceptor tyrosine-based switch motif 91. Pan E, Yu D, Yue B, Potthast L, Chowdhary S, Smith P, Chamberlain
of programmed death 1 upon primary human T cell stimulation, M. A prospective phase II single-institution trial of sunitinib for
but only receptor ligation prevents T cell activation. J Immunol recurrent malignant glioma. J Neurooncol 2012;110:111-8.
2004;173:945-54. 92. Brossa A, Grange C, Mancuso L, Annaratone L, Satolli MA,
74. FDA approves new, targeted treatment for bladder cancer: Tecentriq Mazzone M, Camussi G, Bussolati B. Sunitinib but not VEGF
is the first PD-L1 inhibitor approved by the FDA. Food and Drug blockade inhibits cancer stem cell endothelial differentiation.
Administration, FDA News Release 2016. Oncotarget 2015;6:11295-309.
Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ July 8, 2016 ¦ 241