Page 66 - Read Online
P. 66

Page 12 of 13       Farkas et al. J Cancer Metastasis Treat 2022;8:37  https://dx.doi.org/10.20517/2394-4722.2022.89

                   biopsy-heavy setting: an external validation study of 563 cases. Am J Surg Pathol 2020;44:347-56.  DOI  PubMed
               25.      Fuchs TL, Chou A, Aksoy Y, et al. A critical assessment of current grading schemes for diffuse pleural mesothelioma with a proposal
                   for a novel mesothelioma weighted grading scheme (MWGS). Am J Surg Pathol 2022;46:774-85.  DOI  PubMed
               26.      Marchevsky AM, LeStang N, Hiroshima K, et al. The differential diagnosis between pleural sarcomatoid mesothelioma and spindle
                   cell/pleomorphic (sarcomatoid) carcinomas of the lung: evidence-based guidelines from the International Mesothelioma Panel and the
                   MESOPATH National Reference Center. Hum Pathol 2017;67:160-8.  DOI  PubMed
               27.      Le Stang N, Burke L, Blaizot G, et al. Differential diagnosis of epithelioid malignant mesothelioma with lung and breast pleural
                   metastasis: a systematic review compared with a standardized panel of antibodies-a new proposal that may influence pathologic
                   practice. Arch Pathol Lab Med 2020;144:446-56.  DOI  PubMed
               28.      Chapel DB, Schulte JJ, Husain AN, Krausz T. Application of immunohistochemistry in diagnosis and management of malignant
                   mesothelioma. Transl Lung Cancer Res 2020;9:S3-S27.  DOI  PubMed  PMC
               29.      Ordóñez NG. The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung
                   adenocarcinoma. Am J Surg Pathol 2003;27:1031-51.  DOI  PubMed
               30.      Ordóñez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol
                   2013;44:1-19.  DOI  PubMed
               31.      Patel A, Borczuk AC, Siddiqui MT. Utility of claudin-4 versus BerEP4 and B72.3 in pleural fluids with metastatic lung
                   adenocarcinoma. J Am Soc Cytopathol 2020;9:146-51.  DOI  PubMed
               32.      Vojtek M, Walsh MD, Papadimos DJ, Shield PW. Claudin-4 immunohistochemistry is a useful pan-carcinoma marker for serous
                   effusion specimens. Cytopathology 2019;30:614-9.  DOI  PubMed
               33.      Naso JR, Churg A. Claudin-4 shows superior specificity for mesothelioma vs non-small-cell lung carcinoma compared with MOC-31
                   and Ber-EP4. Hum Pathol 2020;100:10-4.  DOI  PubMed
               34.      McGregor SM, Dunning R, Hyjek E, Vigneswaran W, Husain AN, Krausz T. BAP1 facilitates diagnostic objectivity, classification,
                   and prognostication in malignant pleural mesothelioma. Hum Pathol 2015;46:1670-8.  DOI  PubMed
               35.      Hakim SA, Abou Gabal HH. Diagnostic utility of BAP1, EZH2 and survivin in differentiating pleural epithelioid mesothelioma and
                   reactive mesothelial hyperplasia: immunohistochemical study. Pathol Oncol Res 2021;27:600073.  DOI  PubMed  PMC
               36.      Chapel DB, Hornick JL, Barlow J, Bueno R, Sholl LM. Clinical and molecular validation of BAP1, MTAP, P53, and Merlin
                   immunohistochemistry in diagnosis of pleural mesothelioma. Mod Pathol 2022.  DOI  PubMed
               37.      Dagogo-Jack I, Madison RW, Lennerz JK, et al. Molecular characterization of mesothelioma: impact of histologic type and site of
                   origin on molecular landscape. JCO Precis Oncol 2022;6:e2100422.  DOI  PubMed
               38.      Hung YP, Dong F, Torre M, Crum CP, Bueno R, Chirieac LR. Molecular characterization of diffuse malignant peritoneal
                   mesothelioma. Mod Pathol 2020;33:2269-79.  DOI  PubMed
               39.      Marshall K, Jackson S, Jones J, et al. Homozygous deletion of CDKN2A in malignant mesothelioma: diagnostic utility, patient
                   characteristics and survival in a UK mesothelioma centre. Lung Cancer 2020;150:195-200.  DOI  PubMed
               40.      Oyama Y, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Nabeshima K. Short 57 kb. CDKN2A ;22:813.  DOI  PubMed  PMC
               41.      Nabeshima K, Hamasaki M, Kinoshita Y, Matsumoto S, Sa-Ngiamwibool P. Update of pathological diagnosis of pleural mesothelioma
                   using genomic-based morphological techniques, for both histological and cytological investigations. Pathol Int 2022;72:389-401.  DOI
                   PubMed
               42.      Chapel DB, Dubuc AM, Hornick JL, Sholl LM. Correlation of methylthioadenosine phosphorylase (MTAP) protein expression with
                   MTAP and CDKN2A copy number in malignant pleural mesothelioma. Histopathology 2021;78:1032-42.  DOI  PubMed
               43.      Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine
                   phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 2003;9:2108-13.  PubMed
               44.      Brcic L, Le Stang N, Gallob F, et al. A combination of MTAP and p16 immunohistochemistry can substitute for CDKN2A
                   fluorescence In situ hybridization in diagnosis and prognosis of pleural mesotheliomas. Arch Pathol Lab Med 2022.  DOI  PubMed
               45.      Hwang HC, Sheffield BS, Rodriguez S, et al. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) fish in the diagnosis of
                   malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol 2016;40:120-6.  DOI  PubMed
               46.      Berg  KB,  Dacic  S,  Miller  C,  Cheung  S,  Churg  A.  Utility  of  methylthioadenosine  phosphorylase  compared  with  BAP1
                   immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations
                   from epithelioid malignant mesotheliomas. Arch Pathol Lab Med 2018;142:1549-53.  DOI  PubMed
               47.      Kinoshita Y, Hida T, Hamasaki M, et al. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for
                   the diagnosis of mesothelioma. Cancer Cytopathol 2018;126:54-63.  DOI  PubMed
               48.      Naso JR, Tessier-Cloutier B, Senz J, Huntsman DG, Churg A. Significance of p53 immunostaining in mesothelial proliferations and
                   correlation with TP53 mutation status. Mod Pathol 2022;35:77-81.  DOI  PubMed
               49.      Terra S, Roden AC, Yi ES, Aubry MC, Boland JM. Loss of methylthioadenosine phosphorylase by immunohistochemistry is common
                   in pulmonary sarcomatoid carcinoma and sarcomatoid mesothelioma. Am J Clin Pathol 2022;157:33-9.  DOI  PubMed
               50.      Andrici J, Sheen A, Sioson L, et al. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of
                   mesothelioma in effusion cytology. Mod Pathol 2015;28:1360-8.  DOI  PubMed  PMC
               51.      Sheffield BS, Hwang HC, Lee AF, et al. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial
                   proliferations. Am J Surg Pathol 2015;39:977-82.  DOI  PubMed
               52.      Soeberg MJ, Creighton N, Currow DC, Young JM, van Zandwijk N. Patterns in the incidence, mortality and survival of malignant
   61   62   63   64   65   66   67   68   69   70   71