Page 99 - Read Online
P. 99

Ma et al. J Cancer Metastasis Treat 2022;8:25  https://dx.doi.org/10.20517/2394-4722.2022.17  Page 17 of 20

                    lymphoma: Results from the comprehensive oncology measures for peripheral T-cell lymphoma treatment (COMPLETE) registry.
                    Am J Hematol 2019;94:641-9.  DOI  PubMed  PMC
               9.       Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet 2015;47:1011-9.  DOI  PubMed  PMC
               10.       van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary
                    syndrome. Blood 2009;113:127-36.  DOI  PubMed
               11.       Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T
                    lymphocytes. BMC Immunol 2015;16:27.  DOI  PubMed  PMC
               12.       Antignano F, Zaph C. Regulation of CD4 T-cell differentiation and inflammation by repressive histone methylation. Immunol Cell
                    Biol 2015;93:245-52.  DOI  PubMed
               13.       Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell
                    lymphoma. Blood 2014;123:2915-23.  DOI  PubMed  PMC
               14.       Palomero T, Couronné L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T
                    cell lymphomas. Nat Genet 2014;46:166-70.  DOI  PubMed  PMC
               15.       Ji MM, Huang YH, Huang JY, et al. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.
                    Haematologica 2018;103:679-87.  DOI
               16.       Sandell RF, Boddicker RL, Feldman AL. Genetic landscape and classification of peripheral T Cell lymphomas. Curr Oncol Rep
                    2017;19:28.  DOI  PubMed  PMC
               17.       Quivoron C, Couronné L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a
                    recurrent event during human lymphomagenesis. Cancer Cell 2011;20:25-38.  DOI  PubMed
               18.       Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N
                    Engl J Med 2014;371:2477-87.  DOI  PubMed  PMC
               19.       Bowman RL, Levine RL. TET2 in normal and malignant hematopoiesis. Cold Spring Harb Perspect Med 2017;7:a026518.  DOI
                    PubMed  PMC
               20.       Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 2012;366:95-6.  DOI
                    PubMed
               21.       Lemonnier F, Couronné L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like
                    features and adverse clinical parameters. Blood 2012;120:1466-9.  DOI  PubMed
               22.       Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood
                    2014;123:1293-6.  DOI  PubMed  PMC
               23.       Muto T, Sashida G, Hasegawa N, et al. Myelodysplastic syndrome with extramedullary erythroid hyperplasia induced by loss of Tet2
                    in mice. Leuk Lymphoma 2015;56:520-3.  DOI  PubMed
               24.       Ichiyama K, Chen T, Wang X, et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine
                    gene expression in T cells. Immunity 2015;42:613-26.  DOI  PubMed  PMC
               25.       Cortés JR, Palomero T. Biology and molecular pathogenesis of mature T-Cell lymphomas. Cold Spring Harb Perspect Med
                    2021;11:a035402.  DOI  PubMed  PMC
               26.       Scourzic L, Couronné L, Pedersen MT, et al. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA
                    methylation control to induce lymphoid malignancies in mice. Leukemia 2016;30:1388-98.  DOI  PubMed  PMC
               27.       Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 2012;119:1901-
                    3.  DOI  PubMed  PMC
               28.       Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme
                    activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225-34.  DOI  PubMed  PMC
               29.       Wang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell
                    lymphoma. Blood 2015;126:1741-52.  DOI  PubMed  PMC
               30.       Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc 2013;251:242-9.  DOI  PubMed
               31.       Jaffe AB, Aspenström P, Hall A. Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol
                    Cell Biol 2004;24:1736-46.  DOI  PubMed  PMC
               32.       Morin P, Flors C, Olson MF. Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and
                    impairing cytokinesis. Eur J Cell Biol 2009;88:495-507.  DOI  PubMed  PMC
               33.       Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet
                    2014;46:171-5.  DOI  PubMed
               34.       Yoo HY, Sung MK, Lee SH, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat
                    Genet 2014;46:371-5.  DOI  PubMed
               35.       Ng SY, Brown L, Stevenson K, et al. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in
                    mice. Blood 2018;132:935-47.  DOI  PubMed
               36.       Cortes JR, Ambesi-Impiombato A, Couronné L, et al. RHOA G17V induces T follicular helper cell specification and promotes
                    lymphomagenesis. Cancer Cell 2018;33:259-273.e7.  DOI  PubMed  PMC
               37.       Zang S, Li J, Yang H, et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin
                    Invest 2017;127:2998-3012.  DOI  PubMed  PMC
               38.       Boddicker RL, Razidlo GL, Dasari S, et al. Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in
   94   95   96   97   98   99   100   101   102   103   104