Page 50 - Read Online
P. 50

Tosato et al. J Cancer Metastasis Treat 2021;7:52  https://dx.doi.org/10.20517/2394-4722.2021.120  Page 13 of 14

               56.       Blau O, Hofmann WK, Baldus CD, et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with
                    myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007;35:221-9.  DOI  PubMed
               57.       Huang JC, Basu SK, Zhao X, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant
                    cytogenetics and cytokine elaboration. Blood Cancer J 2015;5:e302.  DOI  PubMed  PMC
               58.       Kim YG, Cho SY, Park TS, Oh SH, Yoon HJ. Therapy-related myelodysplastic syndrome/acute myeloid leukemia with del(7)(q22)
                    in a patient with de novo AML. Ann Clin Lab Sci 2011;41:79-83.  PubMed
               59.       Sala-Torra O, Hanna C, Loken MR, et al. Evidence of donor-derived hematologic malignancies after hematopoietic stem cell
                    transplantation. Biol Blood Marrow Transplant 2006;12:511-7.  DOI  PubMed
               60.       Aanei CM, Flandrin P, Eloae FZ, et al. Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes.
                    Stem Cells Dev 2012;21:1604-15.  DOI  PubMed  PMC
               61.       Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal
                    cells protect tumor cells from cell death. Int J Mol Sci 2012;13:9545-71.  DOI  PubMed  PMC
               62.       Flores-Figueroa E, Montesinos JJ, Flores-Guzmán P, et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal
                    stem cells. Leuk Res 2008;32:1407-16.  DOI  PubMed
               63.       Geyh S, Oz S, Cadeddu RP, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal
                    stromal cells. Leukemia 2013;27:1841-51.  DOI  PubMed
               64.       Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an
                    altered hematopoietic stem cell niche. Cell Stem Cell 2014;15:365-75.  DOI  PubMed  PMC
               65.       Medyouf H, Mossner M, Jann JC, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a
                    transplantable stem cell niche disease unit. Cell Stem Cell 2014;14:824-37.  DOI  PubMed
               66.       Poon Z, Dighe N, Venkatesan SS, et al. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential
                    targets for disease response to hypomethylating therapy. Leukemia 2019;33:1487-500.  DOI  PubMed  PMC
               67.       Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell
                    2015;16:254-67.  DOI  PubMed  PMC
               68.       Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in
                    AML. Cell Stem Cell 2018;22:64-77.e6.  DOI  PubMed  PMC
               69.       Muntión  S,  Ramos  TL,  Diez-Campelo  M,  et  al.  Microvesicles  from  mesenchymal  stromal  cells  are  involved  in  HPC-
                    microenvironment crosstalk in myelodysplastic patients. PLoS One 2016;11:e0146722.  DOI  PubMed  PMC
               70.       Ben-Batalla I, Schultze A, Wroblewski M, et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates
                    paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 2013;122:2443-52.  DOI  PubMed
               71.       Huan J, Hornick NI, Shurtleff MJ, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res 2013;73:918-29.
                    DOI  PubMed
               72.       Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive
                    microenvironment through exosome secretion. Leukemia 2018;32:575-87.  DOI  PubMed  PMC
               73.       Doron B, Abdelhamed S, Butler JT, Hashmi SK, Horton TM, Kurre P. Transmissible ER stress reconfigures the AML bone marrow
                    compartment. Leukemia 2019;33:918-30.  DOI  PubMed  PMC
               74.       Marlein CR, Zaitseva L, Piddock RE, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow
                    stromal cells to leukemic blasts. Blood 2017;130:1649-60.  DOI  PubMed
               75.       Arranz  L,  Sánchez-Aguilera  A,  Martín-Pérez  D,  et  al.  Neuropathy  of  haematopoietic  stem  cell  niche  is  essential  for
                    myeloproliferative neoplasms. Nature 2014;512:78-81.  DOI  PubMed
               76.       Aguayo A, Kantarjian H, Manshouri T et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood
                    2000;96:2240-5.  PubMed
               77.       Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood
                    2000;95:309-13.  PubMed
               78.       Kurata M, Hasegawa M, Nakagawa Y, et al. Expression dynamics of drug resistance genes, multidrug resistance 1 (MDR1) and lung
                    resistance protein (LRP) during the evolution of overt leukemia in myelodysplastic syndromes. Exp Mol Pathol 2006;81:249-54.
                    DOI  PubMed
               79.       Medinger  M,  Skoda  R,  Gratwohl  A,  et  al.  Angiogenesis  and  vascular  endothelial  growth  factor-/receptor  expression  in
                    myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol 2009;146:150-
                    7.  DOI  PubMed
               80.       Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999;81:1398-401.  DOI  PubMed
                    PMC
               81.       Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J. Bone marrow in polycythemia vera, chronic myelocytic
                    leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 2000;157:15-9.  DOI  PubMed  PMC
               82.       Passaro D, Di Tullio A, Abarrategi A, et al. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to
                    Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell 2017;32:324-341.e6.  DOI  PubMed  PMC
               83.       Dias S, Hattori K, Heissig B, et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to
                    induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A 2001;98:10857-62.  DOI  PubMed
                    PMC
               84.       Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor
                    1. Mol Cell Biol 1996;16:4604-13.  DOI  PubMed  PMC
   45   46   47   48   49   50   51   52   53   54   55