Page 50 - Read Online
P. 50
Tosato et al. J Cancer Metastasis Treat 2021;7:52 https://dx.doi.org/10.20517/2394-4722.2021.120 Page 13 of 14
56. Blau O, Hofmann WK, Baldus CD, et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with
myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007;35:221-9. DOI PubMed
57. Huang JC, Basu SK, Zhao X, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant
cytogenetics and cytokine elaboration. Blood Cancer J 2015;5:e302. DOI PubMed PMC
58. Kim YG, Cho SY, Park TS, Oh SH, Yoon HJ. Therapy-related myelodysplastic syndrome/acute myeloid leukemia with del(7)(q22)
in a patient with de novo AML. Ann Clin Lab Sci 2011;41:79-83. PubMed
59. Sala-Torra O, Hanna C, Loken MR, et al. Evidence of donor-derived hematologic malignancies after hematopoietic stem cell
transplantation. Biol Blood Marrow Transplant 2006;12:511-7. DOI PubMed
60. Aanei CM, Flandrin P, Eloae FZ, et al. Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes.
Stem Cells Dev 2012;21:1604-15. DOI PubMed PMC
61. Castells M, Thibault B, Delord JP, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal
cells protect tumor cells from cell death. Int J Mol Sci 2012;13:9545-71. DOI PubMed PMC
62. Flores-Figueroa E, Montesinos JJ, Flores-Guzmán P, et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal
stem cells. Leuk Res 2008;32:1407-16. DOI PubMed
63. Geyh S, Oz S, Cadeddu RP, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal
stromal cells. Leukemia 2013;27:1841-51. DOI PubMed
64. Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an
altered hematopoietic stem cell niche. Cell Stem Cell 2014;15:365-75. DOI PubMed PMC
65. Medyouf H, Mossner M, Jann JC, et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a
transplantable stem cell niche disease unit. Cell Stem Cell 2014;14:824-37. DOI PubMed
66. Poon Z, Dighe N, Venkatesan SS, et al. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential
targets for disease response to hypomethylating therapy. Leukemia 2019;33:1487-500. DOI PubMed PMC
67. Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell
2015;16:254-67. DOI PubMed PMC
68. Duarte D, Hawkins ED, Akinduro O, et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in
AML. Cell Stem Cell 2018;22:64-77.e6. DOI PubMed PMC
69. Muntión S, Ramos TL, Diez-Campelo M, et al. Microvesicles from mesenchymal stromal cells are involved in HPC-
microenvironment crosstalk in myelodysplastic patients. PLoS One 2016;11:e0146722. DOI PubMed PMC
70. Ben-Batalla I, Schultze A, Wroblewski M, et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates
paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 2013;122:2443-52. DOI PubMed
71. Huan J, Hornick NI, Shurtleff MJ, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res 2013;73:918-29.
DOI PubMed
72. Kumar B, Garcia M, Weng L, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive
microenvironment through exosome secretion. Leukemia 2018;32:575-87. DOI PubMed PMC
73. Doron B, Abdelhamed S, Butler JT, Hashmi SK, Horton TM, Kurre P. Transmissible ER stress reconfigures the AML bone marrow
compartment. Leukemia 2019;33:918-30. DOI PubMed PMC
74. Marlein CR, Zaitseva L, Piddock RE, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow
stromal cells to leukemic blasts. Blood 2017;130:1649-60. DOI PubMed
75. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for
myeloproliferative neoplasms. Nature 2014;512:78-81. DOI PubMed
76. Aguayo A, Kantarjian H, Manshouri T et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood
2000;96:2240-5. PubMed
77. Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood
2000;95:309-13. PubMed
78. Kurata M, Hasegawa M, Nakagawa Y, et al. Expression dynamics of drug resistance genes, multidrug resistance 1 (MDR1) and lung
resistance protein (LRP) during the evolution of overt leukemia in myelodysplastic syndromes. Exp Mol Pathol 2006;81:249-54.
DOI PubMed
79. Medinger M, Skoda R, Gratwohl A, et al. Angiogenesis and vascular endothelial growth factor-/receptor expression in
myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol 2009;146:150-
7. DOI PubMed
80. Pruneri G, Bertolini F, Soligo D, et al. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999;81:1398-401. DOI PubMed
PMC
81. Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J. Bone marrow in polycythemia vera, chronic myelocytic
leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 2000;157:15-9. DOI PubMed PMC
82. Passaro D, Di Tullio A, Abarrategi A, et al. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to
Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell 2017;32:324-341.e6. DOI PubMed PMC
83. Dias S, Hattori K, Heissig B, et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to
induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A 2001;98:10857-62. DOI PubMed
PMC
84. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor
1. Mol Cell Biol 1996;16:4604-13. DOI PubMed PMC