Page 49 - Read Online
P. 49

Page 12 of 14      Tosato et al. J Cancer Metastasis Treat 2021;7:52  https://dx.doi.org/10.20517/2394-4722.2021.120

                    2019;21:1309-20.  DOI  PubMed
               24.       Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS. Lineage-biased hematopoietic stem cells are regulated by distinct
                    niches. Dev Cell 2018;44:634-41.e4.  DOI  PubMed  PMC
               25.       Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol
                    2003;171:2326-30.  DOI  PubMed
               26.       Min H, Montecino-Rodriguez E, Dorshkind K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J
                    Immunol 2006;176:1007-12.  DOI  PubMed
               27.       Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone
                    marrow niche organization. Nat Cell Biol 2020;22:38-48.  DOI  PubMed  PMC
               28.       Yamazaki S, Ema H, Karlsson G, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone
                    marrow niche. Cell 2011;147:1146-58.  DOI  PubMed
               29.       Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med
                    2014;20:1315-20.  DOI  PubMed  PMC
               30.       Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of
                    hematopoietic stem cells. Nat Med 2014;20:1321-6.  DOI  PubMed
               31.       Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of
                    hematopoietic stem cells in the bone marrow. J Exp Med 2015;212:2133-46.  DOI  PubMed  PMC
               32.       Kinashi T, Springer TA. Steel factor and c-kit regulate cell-matrix adhesion. Blood 1994;83:1033-8.  PubMed
               33.       Post Y, Clevers H. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell
                    2019;25:174-83.  DOI  PubMed
               34.       Asada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell
                    Biol 2017;19:214-23.  DOI  PubMed  PMC
               35.       Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis
                    require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 2019;24:477-486.e6.  DOI  PubMed  PMC
               36.       Dührsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 1996;73:53-70.  DOI  PubMed
               37.       Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018;22:157-
                    70.  DOI  PubMed  PMC
               38.       Pronk E, Raaijmakers MHGP. The mesenchymal niche in MDS. Blood 2019;133:1031-8.  DOI  PubMed
               39.       Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature
                    2010;464:852-7.  DOI  PubMed  PMC
               40.       Santamaría C, Muntión S, Rosón B, et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal
                    stromal cells from myelodysplastic syndrome patients. Haematologica 2012;97:1218-24.  DOI  PubMed  PMC
               41.       Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts
                    disease evolution in human pre-leukemia. Cell Stem Cell 2016;19:613-27.  DOI  PubMed
               42.       Cazzola M. Myelodysplastic syndromes. N Engl J Med 2020;383:2590.  DOI  PubMed
               43.       Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature
                    2014;506:240-4.  DOI  PubMed  PMC
               44.       Wang J, Fernald AA, Anastasi J, Le Beau MM, Qian Z. Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood
                    2010;115:3481-8.  DOI  PubMed  PMC
               45.       Lane SW, Sykes SM, Al-Shahrour F, et al. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model
                    for MPD/MDS. Blood 2010;115:3489-97.  DOI  PubMed  PMC
               46.       Li L, Sheng Y, Li W, et al. β-Catenin is a candidate therapeutic target for myeloid neoplasms with del(5q). Cancer Res 2017;77:4116-
                    26.  DOI  PubMed  PMC
               47.       Rupec RA, Jundt F, Rebholz B, et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity
                    2005;22:479-91.  DOI  PubMed
               48.       Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone
                    marrow microenvironment. Cell 2007;129:1081-95.  DOI  PubMed  PMC
               49.       Kim YW, Koo BK, Jeong HW, et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood
                    2008;112:4628-38.  DOI  PubMed
               50.       Zimmer SN, Zhou Q, Zhou T, et al. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of
                    stem cells and excessive myelopoiesis. Blood 2011;118:69-79.  DOI  PubMed  PMC
               51.       Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid
                    receptor gamma deficiency. Cell 2007;129:1097-110.  DOI  PubMed  PMC
               52.       Dong L, Yu WM, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature
                    2016;539:304-8.  DOI  PubMed  PMC
               53.       Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan
                    syndrome. Nat Genet 2001;29:465-8.  DOI  PubMed
               54.       Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic
                    syndromes and acute myeloid leukemia. Nat Genet 2003;34:148-50.  DOI  PubMed
               55.       Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia
                    patients have distinct genetic abnormalities compared with leukemic blasts. Blood 2011;118:5583-92.  DOI  PubMed  PMC
   44   45   46   47   48   49   50   51   52   53   54