Page 49 - Read Online
P. 49
Page 12 of 14 Tosato et al. J Cancer Metastasis Treat 2021;7:52 https://dx.doi.org/10.20517/2394-4722.2021.120
2019;21:1309-20. DOI PubMed
24. Pinho S, Marchand T, Yang E, Wei Q, Nerlov C, Frenette PS. Lineage-biased hematopoietic stem cells are regulated by distinct
niches. Dev Cell 2018;44:634-41.e4. DOI PubMed PMC
25. Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol
2003;171:2326-30. DOI PubMed
26. Min H, Montecino-Rodriguez E, Dorshkind K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J
Immunol 2006;176:1007-12. DOI PubMed
27. Baccin C, Al-Sabah J, Velten L, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone
marrow niche organization. Nat Cell Biol 2020;22:38-48. DOI PubMed PMC
28. Yamazaki S, Ema H, Karlsson G, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone
marrow niche. Cell 2011;147:1146-58. DOI PubMed
29. Bruns I, Lucas D, Pinho S, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med
2014;20:1315-20. DOI PubMed PMC
30. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of
hematopoietic stem cells. Nat Med 2014;20:1321-6. DOI PubMed
31. Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of
hematopoietic stem cells in the bone marrow. J Exp Med 2015;212:2133-46. DOI PubMed PMC
32. Kinashi T, Springer TA. Steel factor and c-kit regulate cell-matrix adhesion. Blood 1994;83:1033-8. PubMed
33. Post Y, Clevers H. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell
2019;25:174-83. DOI PubMed
34. Asada N, Kunisaki Y, Pierce H, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell
Biol 2017;19:214-23. DOI PubMed PMC
35. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis
require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 2019;24:477-486.e6. DOI PubMed PMC
36. Dührsen U, Hossfeld DK. Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 1996;73:53-70. DOI PubMed
37. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 2018;22:157-
70. DOI PubMed PMC
38. Pronk E, Raaijmakers MHGP. The mesenchymal niche in MDS. Blood 2019;133:1031-8. DOI PubMed
39. Raaijmakers MH, Mukherjee S, Guo S, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature
2010;464:852-7. DOI PubMed PMC
40. Santamaría C, Muntión S, Rosón B, et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal
stromal cells from myelodysplastic syndrome patients. Haematologica 2012;97:1218-24. DOI PubMed PMC
41. Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts
disease evolution in human pre-leukemia. Cell Stem Cell 2016;19:613-27. DOI PubMed
42. Cazzola M. Myelodysplastic syndromes. N Engl J Med 2020;383:2590. DOI PubMed
43. Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature
2014;506:240-4. DOI PubMed PMC
44. Wang J, Fernald AA, Anastasi J, Le Beau MM, Qian Z. Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood
2010;115:3481-8. DOI PubMed PMC
45. Lane SW, Sykes SM, Al-Shahrour F, et al. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model
for MPD/MDS. Blood 2010;115:3489-97. DOI PubMed PMC
46. Li L, Sheng Y, Li W, et al. β-Catenin is a candidate therapeutic target for myeloid neoplasms with del(5q). Cancer Res 2017;77:4116-
26. DOI PubMed PMC
47. Rupec RA, Jundt F, Rebholz B, et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity
2005;22:479-91. DOI PubMed
48. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone
marrow microenvironment. Cell 2007;129:1081-95. DOI PubMed PMC
49. Kim YW, Koo BK, Jeong HW, et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood
2008;112:4628-38. DOI PubMed
50. Zimmer SN, Zhou Q, Zhou T, et al. Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of
stem cells and excessive myelopoiesis. Blood 2011;118:69-79. DOI PubMed PMC
51. Walkley CR, Olsen GH, Dworkin S, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid
receptor gamma deficiency. Cell 2007;129:1097-110. DOI PubMed PMC
52. Dong L, Yu WM, Zheng H, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature
2016;539:304-8. DOI PubMed PMC
53. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan
syndrome. Nat Genet 2001;29:465-8. DOI PubMed
54. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic
syndromes and acute myeloid leukemia. Nat Genet 2003;34:148-50. DOI PubMed
55. Blau O, Baldus CD, Hofmann WK, et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia
patients have distinct genetic abnormalities compared with leukemic blasts. Blood 2011;118:5583-92. DOI PubMed PMC